scholarly journals Exosomes Derived from LPS stimulated Human Thymic Mesenchymal Stromal Cells Enhance Inflammation via Thrombospondin-1

2021 ◽  
Author(s):  
Qianru Li ◽  
Jing Li ◽  
Lei Sun ◽  
Yun Sun ◽  
Fei Zhao ◽  
...  

Inflammatory response mediated by immune cells is either directly or indirectly regulated by mesenchymal stromal cells (MSCs). Accumulating evidence suggests that thrombospondin-1 (TSP-1) is highly expressed in response to inflammation. In this work, we isolated and identified human thymic mesenchymal stromal cells (tMSCs) and detected the expression of TSP-1. We found that tMSCs expressed TSP-1 and Poly (I: C) or LPS treatment promoted the expression of TSP-1. Further, we isolated and identified exosomes originating from tMSCs (MEXs). Notably, exosomes derived from LPS-pretreated tMSCs (MEXsLPS) promoted the polarization of macrophages to M1-like phenotype and IL-6, TNF-α secretion as well as the pro-inflammatory differentiation of CD4+T cells into Th17 cells. Upon silencing the expression of TSP-1 in tMSCs, the pro-inflammatory effects of MEXsLPS were suppressed. Therefore, these findings uncovered TSP-1 as the principal factor in MEXsLPS pro-inflammatory regulation.

2021 ◽  
Vol 12 ◽  
Author(s):  
Ya-fei Qin ◽  
De-jun Kong ◽  
Hong Qin ◽  
Yang-lin Zhu ◽  
Guang-ming Li ◽  
...  

BackgroundChronic rejection characterized by chronic allograft vasculopathy (CAV) remains a major obstacle to long-term graft survival. Due to multiple complicated mechanisms involved, a novel therapy for CAV remains exploration. Although mesenchymal stromal cells (MSCs) have been ubiquitously applied to various refractory immune-related diseases, rare research makes a thorough inquiry in CAV. Meanwhile, melatonin (MT), a wide spectrum of immunomodulator, plays a non-negligible role in transplantation immunity. Here, we have investigated the synergistic effects of MT in combination with MSCs in attenuation of CAV.MethodsC57BL/6 (B6) mouse recipients receiving BALB/c mouse donor aorta transplantation have been treated with MT and/or adipose-derived MSCs. Graft pathological changes, intragraft immunocyte infiltration, splenic immune cell populations, circulating donor-specific antibodies levels, cytokine profiles were detected on post-operative day 40. The proliferation capacity of CD4+ and CD8+ T cells, populations of Th1, Th17, and Tregs were also assessed in vitro.ResultsGrafts in untreated recipients developed a typical pathological feature of CAV characterized by intimal thickening 40 days after transplantation. Compared to untreated and monotherapy groups, MT in combination with MSCs effectively ameliorated pathological changes of aorta grafts indicated by markedly decreased levels of intimal hyperplasia and the infiltration of CD4+ cells, CD8+ cells, and macrophages, but elevated infiltration of Foxp3+ cells. MT either alone or in combination with MSCs effectively inhibited the proliferation of T cells, decreased populations of Th1 and Th17 cells, but increased the proportion of Tregs in vitro. MT synergized with MSCs displayed much fewer splenic populations of CD4+ and CD8+ T cells, Th1 cells, Th17 cells, CD4+ central memory T cells (Tcm), as well as effector memory T cells (Tem) in aorta transplant recipients. In addition, the percentage of splenic Tregs was substantially increased in the combination therapy group. Furthermore, MT combined with MSCs markedly reduced serum levels of circulating allospecific IgG and IgM, as well as decreased the levels of pro-inflammatory IFN-γ, TNF-α, IL-1β, IL-6, IL-17A, and MCP-1, but increased the level of IL-10 in the recipients.ConclusionsThese data suggest that MT has synergy with MSCs to markedly attenuate CAV and provide a novel therapeutic strategy to improve the long-term allograft acceptance in transplant recipients.


2013 ◽  
Vol 41 (8) ◽  
pp. S64
Author(s):  
Antonella Conforti ◽  
Marco Scarsella ◽  
Ezio Giorda ◽  
Simone Biagini ◽  
Nadia Starc ◽  
...  

2022 ◽  
Vol 2 ◽  
Author(s):  
Oleh Andrukhov ◽  
Alice Blufstein ◽  
Christian Behm

Antimicrobial defense is an essential component of host-microbial homeostasis and contributes substantially to oral health maintenance. Dental mesenchymal stromal cells (MSCs) possess multilineage differentiation potential, immunomodulatory properties and play an important role in various processes like regeneration and disease progression. Recent studies show that dental MSCs might also be involved in antibacterial defense. This occurs by producing antimicrobial peptides or attracting professional phagocytic immune cells and modulating their activity. The production of antimicrobial peptides and immunomodulatory abilities of dental MSCs are enhanced by an inflammatory environment and influenced by vitamin D3. Antimicrobial peptides also have anti-inflammatory effects in dental MSCs and improve their differentiation potential. Augmentation of antibacterial efficiency of dental MSCs could broaden their clinical application in dentistry.


2021 ◽  
Vol 1 (1) ◽  
pp. 2-7
Author(s):  
Carla Longo de Freitas ◽  
Priscilla Yuri Okochi Alves da silva ◽  
Maria do Carmo Pinho Franco ◽  
Danilo Candido De Almeida

The new pandemic of SARS-CoV-2 Betacoronavirus, has spread worldwide, and infected millions of individuals causing the disease denominated of COVID-19. Further on flu symptoms, due to the high tropism of virus, has most been observed in the COVID-19 pathophysiology: acute heart failure, thromboembolism events, acute renal failure, neurological and liver damage, and multiple organ failure, with special attention to endothelial disfunction. Hence, elucidate whether virus target the endothelium is a crucial step to understand COVID-19 pathogenesis. However, the permissiveness of blood vessels during SARS-CoV-2 infection remains unclear, but regardless endothelial infection, the vascular disfunction may occurred in response to molecular inflammatory signaling triggered by immune cells that attempt to limit infection. Thus, alternative therapies using mesenchymal stromal cells (MSCs) can change this scenario and help critically ill patients. In this reflection, we attempt to discuss COVID-19 pathophysiology with impact in endothelial function and explore the applicability of MSC-based therapies as alternative treatment.  


Sign in / Sign up

Export Citation Format

Share Document