scholarly journals Dopamine Signaling Impairs ROS Modulation by Mitochondrial Hexokinase in Human Neural Progenitor Cells

2021 ◽  
Author(s):  
Gabriela Assis-de-Lemos ◽  
Jamila Monteiro ◽  
Viviane Medeiros Oliveira-Valença ◽  
Guilherme A Melo ◽  
Ricardo Augusto de Melo Reis ◽  
...  

Dopamine signaling has numerous roles during brain development. In addition, alterations in dopamine signaling may be also involved in the pathophysiology of psychiatric disorders. Neurodevelopment is modulated in multiple steps by reactive oxygen species (ROS), byproducts of oxidative metabolism which are signaling factors involved in proliferation, differentiation, and migration. Hexokinase (HK), when associated with the mitochondria (mt-HK), is a potent modulator of the generation of mitochondrial ROS in the brain. In this study we investigated whether dopamine could affect both the activity and redox function of mt-HK in human neural progenitor cells (NPCs). We found that dopamine signaling via D1R decreases mt-HK activity and impairs ROS modulation, which is followed by an expressive release of H2O2 and impairment in calcium handling by the mitochondria. Nevertheless, mitochondrial respiration is not affected, suggesting specificity for dopamine on mt-HK function. In neural stem cells (NSCs) derived from iPSCs of schizophrenia patients, mt-HK is unable to decrease mitochondrial ROS, in contrast to NSCs derived from healthy individuals. Our data point to mitochondrial hexokinase as a novel target of dopaminergic signaling, as well as a redox modulator in human neural progenitor cells, which may be relevant to the pathophysiology of neurodevelopmental disorders such as schizophrenia.

2008 ◽  
Vol 17 (7) ◽  
pp. 753-762 ◽  
Author(s):  
Soshana Behrstock ◽  
Allison D. Ebert ◽  
Sandra Klein ◽  
Melanie Schmitt ◽  
Jeannette M. Moore ◽  
...  

PLoS ONE ◽  
2009 ◽  
Vol 4 (10) ◽  
pp. e7630 ◽  
Author(s):  
Dhruv Sareen ◽  
Erin McMillan ◽  
Allison D. Ebert ◽  
Brandon C. Shelley ◽  
Julie A. Johnson ◽  
...  

2018 ◽  
Vol 43 (1) ◽  
pp. 180-189 ◽  
Author(s):  
Kanako Saito ◽  
Ryotaro Kawasoe ◽  
Hiroshi Sasaki ◽  
Ayano Kawaguchi ◽  
Takaki Miyata

Abstract Spatiotemporally ordered production of cells is essential for brain development. Normally, most undifferentiated neural progenitor cells (NPCs) face the apical (ventricular) surface of embryonic brain walls. Pathological detachment of NPCs from the apical surface and their invasion of outer neuronal territories, i.e., formation of NPC heterotopias, can disrupt the overall structure of the brain. Although NPC heterotopias have previously been observed in a variety of experimental contexts, the underlying mechanisms remain largely unknown. Yes-associated protein 1 (Yap1) and the TEA domain (Tead) proteins, which act downstream of Hippo signaling, enhance the stem-like characteristics of NPCs. Elevated expression of Yap1 or Tead in the neural tube (future spinal cord) induces massive NPC heterotopias, but Yap/Tead-induced expansion of NPCs in the developing brain has not been previously reported to produce NPC heterotopias. To determine whether NPC heterotopias occur in a regionally characteristic manner, we introduced the Yap1-S112A or Tead-VP16 into NPCs of the telencephalon and diencephalon, two neighboring but distinct forebrain regions, of embryonic day 10 mice by in utero electroporation, and compared NPC heterotopia formation. Although NPCs in both regions exhibited enhanced stem-like behaviors, heterotopias were larger and more frequent in the diencephalon than in the telencephalon. This result, the first example of Yap/Tead-induced NPC heterotopia in the forebrain, reveals that Yap/Tead-induced NPC heterotopia is not specific to the neural tube, and also suggests that this phenomenon depends on regional factors such as the three-dimensional geometry and assembly of these cells.


2016 ◽  
Vol 65 ◽  
pp. 212-223 ◽  
Author(s):  
Hee Yeon Kim ◽  
Susanna H. Wegner ◽  
Kirk P. Van Ness ◽  
Julie Juyoung Park ◽  
Sara E. Pacheco ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document