Measurements of intracellular calcium concentration in mammalian vascular smooth muscle cells during agonist-induced contractions

1988 ◽  
Vol 16 (4) ◽  
pp. 493-493 ◽  
Author(s):  
KATHLEEN G. MORGAN ◽  
FRANK V. BROZOVICH ◽  
MEEI JYH JIANG
1994 ◽  
Vol 21 (4) ◽  
pp. 521-526 ◽  
Author(s):  
Anna Castro ◽  
Josefa Ros ◽  
Wladimiro Jiménez ◽  
Joan Clària ◽  
Joan Llibre ◽  
...  

2012 ◽  
Vol 22 (2) ◽  
pp. 436-442 ◽  
Author(s):  
Aurylene C. Oliveira ◽  
José G. Sena-Filho ◽  
Leônidas G. Mendes-Júnior ◽  
Raline M. Anjos ◽  
Thaís P. Ribeiro ◽  
...  

2016 ◽  
pp. gfw274 ◽  
Author(s):  
Stacey Dineen Rodenbeck ◽  
Chad A. Zarse ◽  
Mikaela L. McKenney-Drake ◽  
Rebecca S. Bruning ◽  
Michael Sturek ◽  
...  

Planta Medica ◽  
2020 ◽  
Vol 86 (18) ◽  
pp. 1345-1352
Author(s):  
Min Kyung Kim ◽  
A Young Han ◽  
You Kyoung Shin ◽  
Kwang-Won Lee ◽  
Geun Hee Seol

Abstract Codonopsis lanceolata has been widely used as an anti-inflammatory and anti-lipogenic agent in traditional medicine. Recently, C. lanceolata was reported to prevent hypertension by improving vascular function. This study evaluated the effects of C. lanceolata and its major component lancemaside A on cytosolic calcium concentration in vascular endothelial cells and vascular smooth muscle cells. Cytosolic calcium concentration was measured using fura-2 AM fluorescence. C. lanceolata or lancemaside A increased the cytosolic calcium concentration by releasing Ca2+ from the endoplasmic reticulum and sarcoplasmic reticulum and by Ca2+ entry into endothelial cells and vascular smooth muscle cells from extracellular sources. The C. lanceolata- and lancemaside A-induced cytosolic calcium concentration increases were significantly inhibited by lanthanum, an inhibitor of non-selective cation channels, in both endothelial cells and vascular smooth muscle cells. Moreover, C. lanceolata and lancemaside A significantly inhibited store-operated Ca2+ entry under pathological extracellular Ca2+ levels. In Ca2+-free extracellular fluid, increases in the cytosolic calcium concentration induced by C. lanceolata or lancemaside A were significantly inhibited by U73122, an inhibitor of phospholipase C, and 2-APB, an inositol 1,4,5-trisphosphate receptor antagonist. In addition, dantrolene treatment, which inhibits Ca2+ release through ryanodine receptor channels, also inhibited C. lanceolata- or lancemaside A-induced increases in the cytosolic calcium concentration through the phospholipase C/inositol 1,4,5-trisphosphate pathway. These results suggest that C. lanceolata and lancemaside A increase the cytosolic calcium concentration through the non-selective cation channels and phospholipase C/inositol 1,4,5-trisphosphate pathways under physiological conditions and inhibit store-operated Ca2+ entry under pathological conditions in endothelial cells and vascular smooth muscle cells. C. lanceolata or lancemaside A can protect endothelial cells and vascular smooth muscle cells by maintaining cytosolic calcium concentration homeostasis, suggesting possible applications for these materials in diets for preventing vascular damage.


Sign in / Sign up

Export Citation Format

Share Document