Recognition of multiple drugs by a single protein: a trivial solution of an old paradox

2000 ◽  
Vol 28 (4) ◽  
pp. 517-520 ◽  
Author(s):  
N. Vazquez-Laslop ◽  
E. E. Zheleznova ◽  
P. N. Markham ◽  
R. G. Brennan ◽  
A. A. Neyfakh

Multi drug-efflux transporters recognize scores of structurally dissimilar toxic compounds and expel them from cells. The broad chemical specificity of these transporters challenges some of the basic dogmas of biochemistry and remains unexplained. To understand, at least in principle, how a protein can recognize multiple compounds, we analysed the transcriptional regulator of the Bacillus subtilis multidrug transporter Bmr. This regulator, BmrR, binds multiple dissimilar hydrophobic cations and, by activating the expression of the Bmr transporter, causes their expulsion from the cell. Crystallographic analysis of the complexes of the inducer-binding domain of BmrR with some of its inducers revealed that ligands cause disordering of the surface α-helix and penetrate the hydrophobic core of the protein, where they form multiple van der Waals and stacking interactions with hydrophobic amino acids and an electrostatic bond with the buried glutamic residue. Mutational analysis of the binding site suggests that each ligand forms a unique set of atomic contacts with the protein: each tested mutation exerted disparate effects on the binding of different ligands. The example of BmrR demonstrates that a protein can bind multiple compounds with micromolar affinities by using only electrostatic and hydrophobic interactions. Its ligand specificity can be broadened by the flexibility of the binding site. It therefore seems that the commonly expressed fascination with the broad specificity of multidrug transporters is misdirected and originates from an almost exclusive familiarity with the more sophisticated processes of specific molecular recognition that predominate among existing proteins.

1997 ◽  
Vol 110 (15) ◽  
pp. 1759-1765 ◽  
Author(s):  
O. Huber ◽  
M. Krohn ◽  
R. Kemler

The E-cadherin-catenin adhesion complex has been the subject of many structural and functional studies because of its importance in development, normal tissue function and carcinogenesis. It is well established that the cytoplasmic domain of E-cadherin binds either beta-catenin or plakoglobin, which both can assemble alpha-catenin into the complex. Recently we have identified an alpha-catenin binding site in beta-catenin and plakoglobin and postulated, based on sequence analysis, that these protein-protein interactions are mediated by a hydrophobic interaction mechanism. Here we have now identified the reciprocal complementary binding site in alpha-catenin which mediates its interaction with beta-catenin and plakoglobin. Using in vitro association assays with C-terminal truncations of alpha-catenin expressed as recombinant fusion proteins, we found that the N-terminal 146 amino acids are required for this interaction. We then identified a peptide of 27 amino acids within this sequence (amino acid positions 117–143) which is necessary and sufficient to bind beta-catenin or plakoglobin. As shown by mutational analysis, hydrophobic amino acids within this binding site are important for the interaction. The results described here, together with our previous work, give strong support for the idea that these proteins associate by hydrophobic interactions of two alpha-helices.


2000 ◽  
Vol 11 (11) ◽  
pp. 3849-3858 ◽  
Author(s):  
Luba Katz ◽  
Patrick Brennwald

The crystal structure of the synaptic SNARE complex reveals a parallel four-helix coiled-coil arrangement; buried in the hydrophobic core of the complex is an unusual ionic layer composed of three glutamines and one arginine, each provided by a separate α-helix. The presence of glutamine or arginine residues in this position is highly conserved across the t- and v-SNARE families, and it was recently suggested that a 3Q:1R ratio is likely to be a general feature common to all SNARE complexes. In this study, we have used genetic and biochemical assays to test this prediction with the yeast exocytic SNARE complex. We have determined that the relative position of Qs and Rs within the layer is not critical for biological activity and that Q-to-R substitutions in the layer reduce complex stability and result in lethal or conditional lethal growth defects. Surprisingly, SNARE complexes composed of four glutamines are fully functional for assembly in vitro and exocytic function in vivo. We conclude that the 3Q:1R layer composition is not required within the yeast exocytic SNARE complex because complexes containing four Q residues in the ionic layer appear by all criteria to be functionally equivalent. The unexpected flexibility of this layer suggests that there is no strict requirement for the 3Q:1R combination and that the SNARE complexes at other stages of transport may be composed entirely of Q-SNAREs or other noncanonical combinations.


2019 ◽  
Vol 19 (11) ◽  
pp. 914-926 ◽  
Author(s):  
Maiara Bernardes Marques ◽  
Michael González-Durruthy ◽  
Bruna Félix da Silva Nornberg ◽  
Bruno Rodrigues Oliveira ◽  
Daniela Volcan Almeida ◽  
...  

Background:PIM-1 is a kinase which has been related to the oncogenic processes like cell survival, proliferation, and multidrug resistance (MDR). This kinase is known for its ability to phosphorylate the main extrusion pump (ABCB1) related to the MDR phenotype.Objective:In the present work, we tested a new mechanistic insight on the AZD1208 (PIM-1 specific inhibitor) under interaction with chemotherapy agents such as Daunorubicin (DNR) and Vincristine (VCR).Materials and Methods:In order to verify a potential cytotoxic effect based on pharmacological synergism, two MDR cell lines were used: Lucena (resistant to VCR) and FEPS (resistant to DNR), both derived from the K562 non-MDR cell line, by MTT analyses. The activity of Pgp was ascertained by measuring accumulation and the directional flux of Rh123. Furthermore, we performed a molecular docking simulation to delve into the molecular mechanism of PIM-1 alone, and combined with chemotherapeutic agents (VCR and DNR).Results:Our in vitro results have shown that AZD1208 alone decreases cell viability of MDR cells. However, co-exposure of AZD1208 and DNR or VCR reverses this effect. When we analyzed the ABCB1 activity AZD1208 alone was not able to affect the pump extrusion. Differently, co-exposure of AZD1208 and DNR or VCR impaired ABCB1 activity, which could be explained by compensatory expression of abcb1 or other extrusion pumps not analyzed here. Docking analysis showed that AZD1208 is capable of performing hydrophobic interactions with PIM-1 ATP- binding-site residues with stronger interaction-based negative free energy (FEB, kcal/mol) than the ATP itself, mimicking an ATP-competitive inhibitory pattern of interaction. On the same way, VCR and DNR may theoretically interact at the same biophysical environment of AZD1208 and also compete with ATP by the PIM-1 active site. These evidences suggest that AZD1208 may induce pharmacodynamic interaction with VCR and DNR, weakening its cytotoxic potential in the ATP-binding site from PIM-1 observed in the in vitro experiments.Conclusion:Finally, the current results could have a pre-clinical relevance potential in the rational polypharmacology strategies to prevent multiple-drugs resistance in human leukemia cancer therapy.


Author(s):  
Wei He ◽  
Wenhui Zhang ◽  
Zhenhua Chu ◽  
Yu Li

The aim of this paper is to explore the mechanism of the change in oestrogenic activity of PCBs molecules before and after modification by designing new PCBs derivatives in combination with molecular docking techniques through the constructed model of oestrogenic activity of PCBs molecules. We found that the weakened hydrophobic interaction between the hydrophobic amino acid residues and hydrophobic substituents at the binding site of PCB derivatives and human oestrogen receptor alpha (hERα) was the main reason for the weakened binding force and reduced anti-oestrogenic activity. It was consistent with the information that the hydrophobic field displayed by the 3D contour maps in the constructed oestrogen activity CoMSIA model was one of the main influencing force fields. The hydrophobic interaction between PCB derivatives and oestrogen-active receptors was negatively correlated with the average distance between hydrophobic substituents and hydrophobic amino acid residues at the hERα-binding site, and positively correlated with the number of hydrophobic amino acid residues. In other words, the smaller the average distance between the hydrophobic amino acid residues at the binding sites between the two and the more the number of them, and the stronger the oestrogen activity expression degree of PCBS derivative molecules. Therefore, hydrophobic interactions between PCB derivatives and the oestrogen receptor can be reduced by altering the microenvironmental conditions in humans. This reduces the ability of PCB derivatives to bind to the oestrogen receptor and can effectively modulate the risk of residual PCB derivatives to produce oestrogenic activity in humans.


2009 ◽  
Vol 33 (11) ◽  
pp. 2300 ◽  
Author(s):  
Maurizio Remelli ◽  
Daniela Valensin ◽  
Dimitri Bacco ◽  
Ewa Gralka ◽  
Remo Guerrini ◽  
...  

1999 ◽  
Vol 265 (1) ◽  
pp. 210-220 ◽  
Author(s):  
Herwig Schuler ◽  
Elena Korenbaum ◽  
Clarence E. Schutt ◽  
Uno Lindberg ◽  
Roger Karlsson

2001 ◽  
Vol 68 ◽  
pp. 95-110 ◽  
Author(s):  
Andrew J. Doig ◽  
Charles D. Andrew ◽  
Duncan A. E. Cochran ◽  
Eleri Hughes ◽  
Simon Penel ◽  
...  

Pauling first described the α-helix nearly 50 years ago, yet new features of its structure continue to be discovered, using peptide model systems, site-directed mutagenesis, advances in theory, the expansion of the Protein Data Bank and new experimental techniques. Helical peptides in solution form a vast number of structures, including fully helical, fully coiled and partly helical. To interpret peptide results quantitatively it is essential to use a helix/coil model that includes the stabilities of all these conformations. Our models now include terms for helix interiors, capping, side-chain interactions, N-termini and 310-helices. The first three amino acids in a helix (N1, N2 and N3) and the preceding N-cap are unique, as their amide NH groups do not participate in backbone hydrogen bonding. We surveyed their structures in proteins and measured their amino acid preferences. The results are predominantly rationalized by hydrogen bonding to the free NH groups. Stabilizing side-chain-side-chain energies, including hydrophobic interactions, hydrogen bonding and polar/non-polar interactions, were measured accurately in helical peptides. Helices in proteins show a preference for having approximately an integral number of turns so that their N- and C-caps lie on the same side. There are also strong periodic trends in the likelihood of terminating a helix with a Schellman or αL C-cap motif. The kinetics of α-helix folding have been studied with stopped-flow deep ultraviolet circular dichroism using synchrotron radiation as the light source; this gives a far superior signal-to-noise ratio than a conventional instrument. We find that poly(Glu), poly(Lys) and alanine-based peptides fold in milliseconds, with longer peptides showing a transient overshoot in helix content.


Biochemistry ◽  
1966 ◽  
Vol 5 (5) ◽  
pp. 1534-1542 ◽  
Author(s):  
Arnold Wishnia ◽  
Thomas W. Pinder

Sign in / Sign up

Export Citation Format

Share Document