scholarly journals The polymorphic telomeres of the African trypanosome Trypanosoma brucei

2000 ◽  
Vol 28 (5) ◽  
pp. 536-540 ◽  
Author(s):  
G. Rudenko

African trypanosomes have plastic genomes with extensive variability at the chromosome ends. The genes encoding the expressed major surface protein of the infective bloodstream form stages of Trypanosoma brucei and are located at telomeres. These telomeric expression-site transcription units are turning out to be surprisingly polymorphic in structure and sequence.

2001 ◽  
Vol 69 (5) ◽  
pp. 3057-3066 ◽  
Author(s):  
A. F. Barbet ◽  
Jooyoung Yi ◽  
Anna Lundgren ◽  
B. R. McEwen ◽  
E. F. Blouin ◽  
...  

ABSTRACT The rickettsial pathogen Anaplasma marginale expresses a variable immunodominant outer membrane protein, major surface protein 2 (MSP2), involved in antigenic variation and long-term persistence of the organism in carrier animals. MSP2 contains a central hypervariable region of about 100 amino acids that encodes immunogenic B-cell epitopes that induce variant-specific antibodies during infection. Previously, we have shown that MSP2 is encoded on a polycistronic mRNA transcript in erythrocyte stages of A. marginale and defined the structure of the genomic expression site for this transcript. In this study, we show that the same expression site is utilized in stages of A. marginale infecting tick salivary glands. We also analyzed the variability of this genomic expression site in Oklahoma strain A. marginale transmitted from in vitro cultures to cattle and between cattle and ticks. The structure of the expression site and flanking regions was conserved except for sequence that encoded the MSP2 hypervariable region. At least three different MSP2 variants were encoded in each A. marginalepopulation. The major sequence variants did not change on passage ofA. marginale between culture, acute erythrocyte stage infections, and tick salivary glands but did change during persistent infections of cattle. The variant types found in tick salivary glands most closely resembled those present in bovine blood at the time of acquisition of infection, whether infection was acquired from an acute or from a persistent rickettsemia. These variations in structure of an expression site for a major, immunoprotective outer membrane protein have important implications for vaccine development and for obtaining an improved understanding of the mechanisms of persistence of ehrlichial infections in humans, domestic animals, and reservoir hosts.


2000 ◽  
Vol 68 (12) ◽  
pp. 7114-7121 ◽  
Author(s):  
Alan G. Barbour ◽  
Carol J. Carter ◽  
Charles D. Sohaskey

ABSTRACT Borrelia hermsii, an agent of relapsing fever, undergoes antigenic variation of serotype-specifying membrane proteins during mammalian infections. When B. hermsii is cultivated in broth medium, one serotype, 33, eventually predominates in the population. Serotype 33 has also been found to be dominant in ticks but not in mammalian hosts. We investigated the biology and genetics of two independently derived clonal populations of serotype 33 of B. hermsii. Both isolates infected immunodeficient mice, but serotype 33 cells were limited in number and were only transiently present in the blood. Probes for vsp33, which encodes the serotype-specifying Vsp33 outer membrane protein, revealed that the gene was located on a 53-kb linear plasmid and that there was only one locus for the gene in serotype 33. The vsp33 probe and probes for other variable membrane protein genes showed that expression of Vsp33 was determined at the level of transcription and that when thevsp33 expression site was active, an expression site for other variable proteins was silent. The study confirmed that serotype 33 is distinct from other serotypes of B. hermsii in its biology and demonstrated that B. hermsii can change its major surface protein through switching between two expression sites.


1997 ◽  
Vol 326 (2) ◽  
pp. 415-423 ◽  
Author(s):  
Peter BÜTIKOFER ◽  
Stefan RUEPP ◽  
Monika BOSCHUNG ◽  
Isabel RODITI

The surface of Trypanosoma brucei brucei insect forms is covered by an invariant protein coat consisting of procyclins. There are six or seven procyclin genes that encode unusual proteins with extensive tandem repeat units of glutamic acid (E) and proline (P) (referred to as EP repeats), and two genes that encode proteins with internal pentapeptide (GPEET) repeats. Although the EP forms of procyclins have been isolated and characterized by several laboratories, evidence for GPEET procyclin has largely been confined to the expression of its mRNA. To characterize GPEET procyclin further, we isolated the protein from T. b. brucei strain 427. We found that label from [3H]myristic acid and [3H]ethanolamine was incorporated into GPEET procyclin and we demonstrated the protein's covalent modification with a glycosylphosphatidylinositol anchor. The major form of GPEET procyclin showed an apparent molecular mass of 22–32 kDa, was susceptible to proteolytic treatment and was found to be phosphorylated. Surprisingly, our results show that GPEET procyclin represents the major form of procyclin in T. b. brucei 427 culture forms and that the ratio of EP to GPEET procyclin can vary considerably between different cell lines.


2014 ◽  
Vol 104 (2) ◽  
pp. 195-202 ◽  
Author(s):  
A. Bordbar ◽  
S. Soleimani ◽  
F. Fardid ◽  
M.R. Zolfaghari ◽  
P. Parvizi

AbstractIndividual wild-caught sandflies from Iran were examined for infections of Wolbachia pipientis by targeting the major surface protein gene wsp of this intracellular α-proteobacterium. In total, 638 male and female sandflies were screened, of which 241 were found to be positive for one of three wsp haplotypes. Regardless of geographical origins and habitats, Phlebotomus (Phlebotomus) papatasi and other sandfly species were found to be infected with one common, widespread strain of A-group W. pipientis (Turk 54, GenBank accession EU780683; AY288297). In addition, a new A-group haplotype (Turk07, GenBank accession KC576916) was isolated from Phlebotomus (Paraphlebotomus) mongolensis and Phlebotomus (Pa.) caucasicus, and a new B-group haplotype (AZ2331, GenBank accession JX488735) was isolated from Phlebotomus (Larroussius) perfiliewi. Therefore, Wolbachia was found to occur in at least three of the incriminated vectors of zoonotic cutaneous leishmaniasis and zoonotic visceral leishmaniasis in different geographical regions of Iran. It may provide a new tool for the future control of leishmaniasis.


2001 ◽  
Vol 69 (11) ◽  
pp. 6853-6862 ◽  
Author(s):  
Wendy C. Brown ◽  
Guy H. Palmer ◽  
Harris A. Lewin ◽  
Travis C. McGuire

ABSTRACT Native major surface protein 1 (MSP1) of the ehrlichial pathogenAnaplasma marginale induces protective immunity in calves challenged with homologous and heterologous strains. MSP1 is a heteromeric complex of a single MSP1a protein covalently associated with MSP1b polypeptides, of which at least two (designated MSP1F1 and MSP1F3) in the Florida strain are expressed. Immunization with recombinant MSP1a and MSP1b alone or in combination fails to provide protection. The protective immunity in calves immunized with native MSP1 is associated with the development of opsonizing and neutralizing antibodies, but CD4+ T-lymphocyte responses have not been evaluated. CD4+ T lymphocytes participate in protective immunity to ehrlichial pathogens through production of gamma interferon (IFN-γ), which promotes switching to high-affinity immunoglobulin G (IgG) and activation of phagocytic cells to produce nitric oxide. Thus, an effective vaccine for A. marginaleand related organisms should contain both T- and B-lymphocyte epitopes that induce a strong memory response that can be recalled upon challenge with homologous and heterologous strains. This study was designed to determine the relative contributions of MSP1a and MSP1b proteins, which contain both variant and conserved amino acid sequences, in stimulating memory CD4+ T-lymphocyte responses in calves immunized with native MSP1. Peripheral blood mononuclear cells and CD4+ T-cell lines from MSP1-immunized calves proliferated vigorously in response to the immunizing strain (Florida) and heterologous strains of A. marginale. The conserved MSP1-specific response was preferentially directed to the carboxyl-terminal region of MSP1a, which stimulated high levels of IFN-γ production by CD4+ T cells. In contrast, there was either weak or no recognition of MSP1b proteins. Paradoxically, all calves developed high titers of IgG antibodies to both MSP1a and MSP1b polypeptides. These findings suggest that in calves immunized with MSP1 heteromeric complex, MSP1a-specific T lymphocytes may provide help to MSP1b-specific B lymphocytes. The data provide a basis for determining whether selected MSP1a CD4+ T-lymphocyte epitopes and selected MSP1a and MSP1b B-lymphocyte epitopes presented on the same molecule can stimulate a protective immune response.


2004 ◽  
Vol 72 (12) ◽  
pp. 7360-7366 ◽  
Author(s):  
Jeffrey R. Abbott ◽  
Guy H. Palmer ◽  
Chris J. Howard ◽  
Jayne C. Hope ◽  
Wendy C. Brown

ABSTRACT Organisms in the genus Anaplasma express an immunodominant major surface protein 2 (MSP2), composed of a central hypervariable region (HVR) flanked by highly conserved regions. Throughout Anaplasma marginale infection, recombination results in the sequential appearance of novel MSP2 variants and subsequent control of rickettsemia by the immune response, leading to persistent infection. To determine whether immune evasion and selection for variant organisms is associated with a predominant response against HVR epitopes, T-cell and linear B-cell epitopes were localized by measuring peripheral blood gamma interferon-secreting cells, proliferation, and antibody binding to 27 overlapping peptides spanning MSP2 in 16 cattle. Similar numbers of MSP2-specific CD4+ T-cell epitopes eliciting responses of similar magnitude were found in conserved and hypervariable regions. T-cell epitope clusters recognized by the majority of animals were identified in the HVR (amino acids [aa] 171 to 229) and conserved regions (aa 101 to 170 and 272 to 361). In contrast, linear B-cell epitopes were concentrated in the HVR, residing within hydrophilic sequences. The pattern of recognition of epitope clusters by T cells and of HVR epitopes by B cells is consistent with the influence of protein structure on epitope recognition.


mSphere ◽  
2018 ◽  
Vol 3 (5) ◽  
Author(s):  
Yijian Qiu ◽  
Jillian E. Milanes ◽  
Jessica A. Jones ◽  
Rooksana E. Noorai ◽  
Vijay Shankar ◽  
...  

ABSTRACT The African trypanosome has evolved mechanisms to adapt to changes in nutrient availability that occur during its life cycle. During transition from mammalian blood to insect vector gut, parasites experience a rapid reduction in environmental glucose. Here we describe how pleomorphic parasites respond to glucose depletion with a focus on parasite changes in energy metabolism and growth. Long slender bloodstream form parasites were rapidly killed as glucose concentrations fell, while short stumpy bloodstream form parasites persisted to differentiate into the insect-stage procyclic form parasite. The rate of differentiation was lower than that triggered by other cues but reached physiological rates when combined with cold shock. Both differentiation and growth of resulting procyclic form parasites were inhibited by glucose and nonmetabolizable glucose analogs, and these parasites were found to have upregulated amino acid metabolic pathway component gene expression. In summary, glucose transitions from the primary metabolite of the blood-stage infection to a negative regulator of cell development and growth in the insect vector, suggesting that the hexose is not only a key metabolic agent but also an important signaling molecule. IMPORTANCE As the African trypanosome Trypanosoma brucei completes its life cycle, it encounters many different environments. Adaptation to these environments includes modulation of metabolic pathways to parallel the availability of nutrients. Here, we describe how the blood-dwelling life cycle stages of the African trypanosome, which consume glucose to meet their nutritional needs, respond differently to culture in the near absence of glucose. The proliferative long slender parasites rapidly die, while the nondividing short stumpy parasite remains viable and undergoes differentiation to the next life cycle stage, the procyclic form parasite. Interestingly, a sugar analog that cannot be used as an energy source inhibited the process. Furthermore, the growth of procyclic form parasite that resulted from the event was inhibited by glucose, a behavior that is similar to that of parasites isolated from tsetse flies. Our findings suggest that glucose sensing serves as an important modulator of nutrient adaptation in the parasite.


Sign in / Sign up

Export Citation Format

Share Document