Structural and functional alterations in the androgen receptor in spinal bulbar muscular atrophy

2001 ◽  
Vol 29 (2) ◽  
pp. 222-227 ◽  
Author(s):  
I. J. McEwan

The androgen receptor is a member of the nuclear receptor superfamily, and regulates gene expression in response to the steroid hormones testosterone and dihydrotestosterone. Mutations in the receptor have been correlated with a diverse range of clinical conditions, including androgen insensitivity, prostate cancer and spinal bulbar muscular atrophy, a neuromuscular degenerative condition. The latter is caused by expansion of a polyglutamine repeat within the N-terminal domain of the receptor. Thus the androgen receptor is one of a growing number of neurodegenerative disease-associated proteins, including huntingtin (Huntington's disease), ataxin-1 (spinocerebellar ataxia, type 1) and ataxin-3 (spinocerebellar ataxia, type 3), which show expansion of CAG triplet repeats. Although widely studied, the functions of huntingtin, ataxin-1 and ataxin-3 remain unknown. The androgen receptor, which has a well-recognized function in gene regulation, provides a unique opportunity to investigate the functional significance of poly(amino acid) repeats in normal and disease states.

2004 ◽  
Vol 31 (S 1) ◽  
Author(s):  
L Schöls ◽  
J Andrich ◽  
H Przuntek ◽  
K Müller ◽  
J Zange

2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Zhefan Stephen Chen ◽  
Xiaoying Huang ◽  
Kevin Talbot ◽  
Ho Yin Edwin Chan

AbstractPolyglutamine (polyQ) diseases comprise Huntington’s disease and several subtypes of spinocerebellar ataxia, including spinocerebellar ataxia type 3 (SCA3). The genomic expansion of coding CAG trinucleotide sequence in disease genes leads to the production and accumulation of misfolded polyQ domain-containing disease proteins, which cause cellular dysfunction and neuronal death. As one of the principal cellular protein clearance pathways, the activity of the ubiquitin–proteasome system (UPS) is tightly regulated to ensure efficient clearance of damaged and toxic proteins. Emerging evidence demonstrates that UPS plays a crucial role in the pathogenesis of polyQ diseases. Ubiquitin (Ub) E3 ligases catalyze the transfer of a Ub tag to label proteins destined for proteasomal clearance. In this study, we identified an E3 ligase, pre-mRNA processing factor 19 (Prpf19/prp19), that modulates expanded ataxin-3 (ATXN3-polyQ), disease protein of SCA3, induced neurodegeneration in both mammalian and Drosophila disease models. We further showed that Prpf19/prp19 promotes poly-ubiquitination and degradation of mutant ATXN3-polyQ protein. Our data further demonstrated the nuclear localization of Prpf19/prp19 is essential for eliciting its modulatory function towards toxic ATXN3-polyQ protein. Intriguingly, we found that exocyst complex component 7 (Exoc7/exo70), a Prpf19/prp19 interacting partner, modulates expanded ATXN3-polyQ protein levels and toxicity in an opposite manner to Prpf19/prp19. Our data suggest that Exoc7/exo70 exerts its ATXN3-polyQ-modifying effect through regulating the E3 ligase function of Prpf19/prp19. In summary, this study allows us to better define the mechanistic role of Exoc7/exo70-regulated Prpf19/prp19-associated protein ubiquitination pathway in SCA3 pathogenesis.


2021 ◽  
Author(s):  
Jeannette Hübener‐Schmid ◽  
Kirsten Kuhlbrodt ◽  
Julien Peladan ◽  
Jennifer Faber ◽  
Magda M. Santana ◽  
...  

2016 ◽  
Vol 16 (3) ◽  
pp. 589-592 ◽  
Author(s):  
Susanne K. Hansen ◽  
Helena Borland ◽  
Lis F. Hasholt ◽  
Zeynep Tümer ◽  
Jørgen E. Nielsen ◽  
...  

1995 ◽  
Vol 4 (9) ◽  
pp. 1585-1590 ◽  
Author(s):  
David C. Rubinsztein ◽  
Jayne Leggo ◽  
Gerhard A. Coetzee ◽  
Ryan A. Irvine ◽  
Michael Buckley ◽  
...  

1995 ◽  
Vol 38 (1) ◽  
pp. 68-72 ◽  
Author(s):  
Toni Matilla ◽  
Alanna McCall ◽  
S. H. Subramony ◽  
Huda Y. Zoghbi

2016 ◽  
Vol 16 (3) ◽  
pp. 553-556 ◽  
Author(s):  
Susanne K. Hansen ◽  
Helena Borland ◽  
Lis F. Hasholt ◽  
Zeynep Tümer ◽  
Jørgen E. Nielsen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document