Structural and functional alterations in the androgen receptor in spinal bulbar muscular atrophy
The androgen receptor is a member of the nuclear receptor superfamily, and regulates gene expression in response to the steroid hormones testosterone and dihydrotestosterone. Mutations in the receptor have been correlated with a diverse range of clinical conditions, including androgen insensitivity, prostate cancer and spinal bulbar muscular atrophy, a neuromuscular degenerative condition. The latter is caused by expansion of a polyglutamine repeat within the N-terminal domain of the receptor. Thus the androgen receptor is one of a growing number of neurodegenerative disease-associated proteins, including huntingtin (Huntington's disease), ataxin-1 (spinocerebellar ataxia, type 1) and ataxin-3 (spinocerebellar ataxia, type 3), which show expansion of CAG triplet repeats. Although widely studied, the functions of huntingtin, ataxin-1 and ataxin-3 remain unknown. The androgen receptor, which has a well-recognized function in gene regulation, provides a unique opportunity to investigate the functional significance of poly(amino acid) repeats in normal and disease states.