Regulation of clathrin-coated vesicle formation

2001 ◽  
Vol 29 (4) ◽  
pp. 375-377 ◽  
Author(s):  
E. Hill ◽  
O. Olusanya ◽  
J. van der Kaay ◽  
C. P. Downes ◽  
P. D. Andrews ◽  
...  

The formation of clathrin-coated pits at the plasma membrane requires the concerted action of many different molecules. The real challenge lies in determining the hierarchy of these interactions. We are using assays in both intact and permeabilized cells to dissect the temporal requirements for clathrin-coated vesicle formation, and also to examine the role of phosphorylation of the coat proteins.


2001 ◽  
Vol 152 (2) ◽  
pp. 309-324 ◽  
Author(s):  
Elaine Hill ◽  
Jeroen van der Kaay ◽  
C. Peter Downes ◽  
Elizabeth Smythe

Plasma membrane clathrin-coated vesicles form after the directed assembly of clathrin and the adaptor complex, AP2, from the cytosol onto the membrane. In addition to these structural components, several other proteins have been implicated in clathrin-coated vesicle formation. These include the large molecular weight GTPase, dynamin, and several Src homology 3 (SH3) domain–containing proteins which bind to dynamin via interactions with its COOH-terminal proline/arginine-rich domain (PRD). To understand the mechanism of coated vesicle formation, it is essential to determine the hierarchy by which individual components are targeted to and act in coated pit assembly, invagination, and scission. To address the role of dynamin and its binding partners in the early stages of endocytosis, we have used well-established in vitro assays for the late stages of coated pit invagination and coated vesicle scission. Dynamin has previously been shown to have a role in scission of coated vesicles. We show that dynamin is also required for the late stages of invagination of clathrin-coated pits. Furthermore, dynamin must bind and hydrolyze GTP for its role in sequestering ligand into deeply invaginated coated pits. We also demonstrate that the SH3 domain of endophilin, which binds both synaptojanin and dynamin, inhibits both late stages of invagination and also scission in vitro. This inhibition results from a reduction in phosphoinositide 4,5-bisphosphate levels which causes dissociation of AP2, clathrin, and dynamin from the plasma membrane. The dramatic effects of the SH3 domain of endophilin led us to propose a model for the temporal order of addition of endophilin and its binding partner synaptojanin in the coated vesicle cycle.



2003 ◽  
Vol 162 (5) ◽  
pp. 909-918 ◽  
Author(s):  
Alison Motley ◽  
Nicholas A. Bright ◽  
Matthew N.J. Seaman ◽  
Margaret S. Robinson

We have used RNA interference to knock down the AP-2 μ2 subunit and clathrin heavy chain to undetectable levels in HeLaM cells. Clathrin-coated pits associated with the plasma membrane were still present in the AP-2–depleted cells, but they were 12-fold less abundant than in control cells. No clathrin-coated pits or vesicles could be detected in the clathrin-depleted cells, and post-Golgi membrane compartments were swollen. Receptor-mediated endocytosis of transferrin was severely inhibited in both clathrin- and AP-2–depleted cells. Endocytosis of EGF, and of an LDL receptor chimera, were also inhibited in the clathrin-depleted cells; however, both were internalized as efficiently in the AP-2–depleted cells as in control cells. These results indicate that AP-2 is not essential for clathrin-coated vesicle formation at the plasma membrane, but that it is one of several endocytic adaptors required for the uptake of certain cargo proteins including the transferrin receptor. Uptake of the EGF and LDL receptors may be facilitated by alternative adaptors.



1999 ◽  
Vol 5 (S2) ◽  
pp. 1024-1025
Author(s):  
Peijun Zhang ◽  
Jenny E. Hinshaw

Dynamin is a 100 kD GTPase that plays an essential role in clathrin-coated vesicle formation during receptor mediated endocytosis, and in caveolae internalization and may play a role in intracellular membrane trafficking (1). It shares an extensive sequence homology (70% identity) to shibiregene product in Drosophila(2,3). The shibiretsmutants exhibit a rapid and reversible paralysis at non-permissive temperature due to a depletion of synaptic vesicles in their nerve termini which is believed to be caused by a block in endocytosis since there is an accumulation of “collared” clathrin-coated pits at the plasma membrane (4). Synaptosomes treated with GTPγs produces elongated necks surrounded by dynamin (6). Purified recombinant dynamin itself can assemble to form spirals and bind to lipid vesicles to form tubes, which resemble the “collar” at the necks of coated pits (5). These dynamin tubes vesiculate upon GTP treatment (7), suggesting a unique role of dynamin acting as a mechanoenzyme which causes clathrin-coated vesicles to be pinched off plasma membrane.



1993 ◽  
Vol 122 (3) ◽  
pp. 553-563 ◽  
Author(s):  
AM van der Bliek ◽  
TE Redelmeier ◽  
H Damke ◽  
EJ Tisdale ◽  
EM Meyerowitz ◽  
...  

The role of human dynamin in receptor-mediated endocytosis was investigated by transient expression of GTP-binding domain mutants in mammalian cells. Using assays which detect intermediates in coated vesicle formation, the dynamin mutants were found to block endocytosis at a stage after the initiation of coat assembly and preceding the sequestration of ligands into deeply invaginated coated pits. Membrane transport from the ER to the Golgi complex was unaffected indicating that dynamin mutants specifically block early events in endocytosis. These results demonstrate that mutations in the GTP-binding domain of dynamin block Tfn-endocytosis in mammalian cells and suggest that a functional dynamin GTPase is required for receptor-mediated endocytosis via clathrin-coated pits.



2005 ◽  
Vol 72 ◽  
pp. 65-70 ◽  
Author(s):  
Alexander Flett ◽  
Sophia Semerdjieva ◽  
Antony P. Jackson ◽  
Elizabeth Smythe

Reversible phosphorylation has long been an attractive mechanism to control cycles of coat assembly and disassembly during clathrin-mediated endocytosis. Many of the coat proteins are phosphorylated in vivo and in vitro. Our work has focused on the role of phosphorylation of the $#x03BC;2 subunit of AP-2 (adaptor protein 2), which appears to be necessary for efficient cargo recruitment. Studies to probe the regulation of $#x03BC;2 phosphorylation demonstrated that clathrin is a specific activator of the $#x03BC;2 kinase, and, in permeabilized cells, cargo sequestration, driven by exogenously added clathrin, results in elevated levels of $#x03BC;2 phosphorylation. Furthermore, phosphorylated $#x03BC;2 is mainly associated with assembled clathrin in vivo and its steady-state level is strongly reduced in cells depleted of clathrin heavy chain. Our results imply a central role for clathrin in the regulation of cargo selection via modulation of phospho-$#x03BC;2 levels. This is therefore a novel regulatory role for clathrin that is independent of its structural role and that provides elegant spatial control of AP-2 and cargo interactions, ensuring that AP-2 is only activated at the correct cellular location and in the correct functional context. Ongoing studies are exploring further the roles of reversible phosphorylation in the coated vesicle cycle.



1994 ◽  
Vol 127 (4) ◽  
pp. 915-934 ◽  
Author(s):  
H Damke ◽  
T Baba ◽  
D E Warnock ◽  
S L Schmid

Dynamin is the mammalian homologue to the Drosophila shibire gene product. Mutations in this 100-kD GTPase cause a pleiotropic defect in endocytosis. To further investigate its role, we generated stable HeLa cell lines expressing either wild-type dynamin or a mutant defective in GTP binding and hydrolysis driven by a tightly controlled, tetracycline-inducible promoter. Overexpression of wild-type dynamin had no effect. In contrast, coated pits failed to become constricted and coated vesicles failed to bud in cells overexpressing mutant dynamin so that endocytosis via both transferrin (Tfn) and EGF receptors was potently inhibited. Coated pit assembly, invagination, and the recruitment of receptors into coated pits were unaffected. Other vesicular transport pathways, including Tfn receptor recycling, Tfn receptor biosynthesis, and cathepsin D transport to lysosomes via Golgi-derived coated vesicles, were unaffected. Bulk fluid-phase uptake also continued at the same initial rates as wild type. EM immunolocalization showed that membrane-bound dynamin was specifically associated with clathrin-coated pits on the plasma membrane. Dynamin was also associated with isolated coated vesicles, suggesting that it plays a role in vesicle budding. Like the Drosophila shibire mutant, HeLa cells overexpressing mutant dynamin accumulated long tubules, many of which remained connected to the plasma membrane. We conclude that dynamin is specifically required for endocytic coated vesicle formation, and that its GTP binding and hydrolysis activities are required to form constricted coated pits and, subsequently, for coated vesicle budding.



1994 ◽  
Vol 5 (2) ◽  
pp. 237-252 ◽  
Author(s):  
T C Taylor ◽  
M Kanstein ◽  
P Weidman ◽  
P Melançon

We investigated the role of ADP-ribosylation factors (ARFs) in Golgi function using biochemical and morphological cell-free assays. An ARF-free cytosol produced from soluble Chinese hamster ovary (CHO) extracts supports intra-Golgi transport by a mechanism that is biochemically indistinguishable from control transport reactions: ARF-free transport reactions are NSF-dependent, remain sensitive to the donor Golgi-specific inhibitor ilimaquinone, and exhibit kinetics that are identical to that of control reactions containing ARFs. In contrast, ARF-free cytosol does not support the formation of coated vesicles on Golgi cisternae. However, vesicle formation is reconstituted upon the addition of ARF1. These data suggest that neither soluble ARFs nor coated vesicle formation are essential for transport. We conclude that cell-free intra-Golgi transport proceeds via a coated vesicle-independent mechanism regardless of vesicle formation on Golgi cisternae.



Cell ◽  
1998 ◽  
Vol 93 (2) ◽  
pp. 263-275 ◽  
Author(s):  
Ken Matsuoka ◽  
Lelio Orci ◽  
Mylène Amherdt ◽  
Sebastian Y Bednarek ◽  
Susan Hamamoto ◽  
...  


1998 ◽  
Vol 140 (5) ◽  
pp. 1055-1062 ◽  
Author(s):  
Alexandre Benmerah ◽  
Christophe Lamaze ◽  
Bernadette Bègue ◽  
Sandra L. Schmid ◽  
Alice Dautry-Varsat ◽  
...  

We have previously shown that the protein Eps15 is constitutively associated with the plasma membrane adaptor complex, AP-2, suggesting its possible role in endocytosis. To explore the role of Eps15 and the function of AP-2/Eps15 association in endocytosis, the Eps15 binding domain for AP-2 was precisely delineated. The entire COOH-terminal domain of Eps15 or a mutant form lacking all the AP-2–binding sites was fused to the green fluorescent protein (GFP), and these constructs were transiently transfected in HeLa cells. Overexpression of the fusion protein containing the entire COOH-terminal domain of Eps15 strongly inhibited endocytosis of transferrin, whereas the fusion protein in which the AP-2–binding sites had been deleted had no effect. These results were confirmed in a cell-free assay that uses perforated A431 cells to follow the first steps of coated vesicle formation at the plasma membrane. Addition of Eps15-derived glutathione-S-transferase fusion proteins containing the AP-2–binding site in this assay inhibited not only constitutive endocytosis of transferrin but also ligand-induced endocytosis of epidermal growth factor. This inhibition could be ascribed to a competition between the fusion protein and endogenous Eps15 for AP-2 binding. Altogether, these results show that interaction of Eps15 with AP-2 is required for efficient receptor-mediated endocytosis and thus provide the first evidence that Eps15 is involved in the function of plasma membrane–coated pits.



2003 ◽  
Vol 14 (2) ◽  
pp. 516-528 ◽  
Author(s):  
Xufeng Wu ◽  
Xiaohong Zhao ◽  
Rosa Puertollano ◽  
Juan S. Bonifacino ◽  
Evan Eisenberg ◽  
...  

We previously demonstrated, using fluorescence recovery after photobleaching, that clathrin in clathrin-coated pits at the plasma membrane exchanges with free clathrin in the cytosol, suggesting that clathrin-coated pits are dynamic structures. We now investigated whether clathrin at the trans-Golgi network as well as the clathrin adaptors AP2 and AP1 in clathrin-coated pits at the plasma membrane and trans-Golgi network, respectively, also exchange with free proteins in the cytosol. We found that when the budding of clathrin-coated vesicle is blocked without significantly affecting the structure of clathrin-coated pits, both clathrin and AP2 at the plasma membrane and clathrin and AP1 at thetrans-Golgi network exchange rapidly with free proteins in the cytosol. In contrast, when budding of clathrin-coated vesicles was blocked at the plasma membrane or trans-Golgi network by hypertonic sucrose or K+ depletion, conditions that markedly affect the structure of clathrin-coated pits, clathrin exchange was blocked but AP2 at the plasma membrane and both AP1 and the GGA1 adaptor at the trans-Golgi network continue to rapidly exchange. We conclude that clathrin-coated pits are dynamic structures with rapid exchange of both clathrin and adaptors and that adaptors are able to exchange independently of clathrin when clathrin exchange is blocked.



Sign in / Sign up

Export Citation Format

Share Document