scholarly journals Clathrin-mediated endocytosis in AP-2–depleted cells

2003 ◽  
Vol 162 (5) ◽  
pp. 909-918 ◽  
Author(s):  
Alison Motley ◽  
Nicholas A. Bright ◽  
Matthew N.J. Seaman ◽  
Margaret S. Robinson

We have used RNA interference to knock down the AP-2 μ2 subunit and clathrin heavy chain to undetectable levels in HeLaM cells. Clathrin-coated pits associated with the plasma membrane were still present in the AP-2–depleted cells, but they were 12-fold less abundant than in control cells. No clathrin-coated pits or vesicles could be detected in the clathrin-depleted cells, and post-Golgi membrane compartments were swollen. Receptor-mediated endocytosis of transferrin was severely inhibited in both clathrin- and AP-2–depleted cells. Endocytosis of EGF, and of an LDL receptor chimera, were also inhibited in the clathrin-depleted cells; however, both were internalized as efficiently in the AP-2–depleted cells as in control cells. These results indicate that AP-2 is not essential for clathrin-coated vesicle formation at the plasma membrane, but that it is one of several endocytic adaptors required for the uptake of certain cargo proteins including the transferrin receptor. Uptake of the EGF and LDL receptors may be facilitated by alternative adaptors.


2001 ◽  
Vol 152 (2) ◽  
pp. 309-324 ◽  
Author(s):  
Elaine Hill ◽  
Jeroen van der Kaay ◽  
C. Peter Downes ◽  
Elizabeth Smythe

Plasma membrane clathrin-coated vesicles form after the directed assembly of clathrin and the adaptor complex, AP2, from the cytosol onto the membrane. In addition to these structural components, several other proteins have been implicated in clathrin-coated vesicle formation. These include the large molecular weight GTPase, dynamin, and several Src homology 3 (SH3) domain–containing proteins which bind to dynamin via interactions with its COOH-terminal proline/arginine-rich domain (PRD). To understand the mechanism of coated vesicle formation, it is essential to determine the hierarchy by which individual components are targeted to and act in coated pit assembly, invagination, and scission. To address the role of dynamin and its binding partners in the early stages of endocytosis, we have used well-established in vitro assays for the late stages of coated pit invagination and coated vesicle scission. Dynamin has previously been shown to have a role in scission of coated vesicles. We show that dynamin is also required for the late stages of invagination of clathrin-coated pits. Furthermore, dynamin must bind and hydrolyze GTP for its role in sequestering ligand into deeply invaginated coated pits. We also demonstrate that the SH3 domain of endophilin, which binds both synaptojanin and dynamin, inhibits both late stages of invagination and also scission in vitro. This inhibition results from a reduction in phosphoinositide 4,5-bisphosphate levels which causes dissociation of AP2, clathrin, and dynamin from the plasma membrane. The dramatic effects of the SH3 domain of endophilin led us to propose a model for the temporal order of addition of endophilin and its binding partner synaptojanin in the coated vesicle cycle.



1994 ◽  
Vol 127 (4) ◽  
pp. 915-934 ◽  
Author(s):  
H Damke ◽  
T Baba ◽  
D E Warnock ◽  
S L Schmid

Dynamin is the mammalian homologue to the Drosophila shibire gene product. Mutations in this 100-kD GTPase cause a pleiotropic defect in endocytosis. To further investigate its role, we generated stable HeLa cell lines expressing either wild-type dynamin or a mutant defective in GTP binding and hydrolysis driven by a tightly controlled, tetracycline-inducible promoter. Overexpression of wild-type dynamin had no effect. In contrast, coated pits failed to become constricted and coated vesicles failed to bud in cells overexpressing mutant dynamin so that endocytosis via both transferrin (Tfn) and EGF receptors was potently inhibited. Coated pit assembly, invagination, and the recruitment of receptors into coated pits were unaffected. Other vesicular transport pathways, including Tfn receptor recycling, Tfn receptor biosynthesis, and cathepsin D transport to lysosomes via Golgi-derived coated vesicles, were unaffected. Bulk fluid-phase uptake also continued at the same initial rates as wild type. EM immunolocalization showed that membrane-bound dynamin was specifically associated with clathrin-coated pits on the plasma membrane. Dynamin was also associated with isolated coated vesicles, suggesting that it plays a role in vesicle budding. Like the Drosophila shibire mutant, HeLa cells overexpressing mutant dynamin accumulated long tubules, many of which remained connected to the plasma membrane. We conclude that dynamin is specifically required for endocytic coated vesicle formation, and that its GTP binding and hydrolysis activities are required to form constricted coated pits and, subsequently, for coated vesicle budding.



2001 ◽  
Vol 29 (4) ◽  
pp. 375-377 ◽  
Author(s):  
E. Hill ◽  
O. Olusanya ◽  
J. van der Kaay ◽  
C. P. Downes ◽  
P. D. Andrews ◽  
...  

The formation of clathrin-coated pits at the plasma membrane requires the concerted action of many different molecules. The real challenge lies in determining the hierarchy of these interactions. We are using assays in both intact and permeabilized cells to dissect the temporal requirements for clathrin-coated vesicle formation, and also to examine the role of phosphorylation of the coat proteins.



2002 ◽  
Vol 159 (1) ◽  
pp. 69-78 ◽  
Author(s):  
Jia-Shu Yang ◽  
Stella Y. Lee ◽  
Minggeng Gao ◽  
Sylvain Bourgoin ◽  
Paul A. Randazzo ◽  
...  

The role of GTPase-activating protein (GAP) that deactivates ADP-ribosylation factor 1 (ARF1) during the formation of coat protein I (COPI) vesicles has been unclear. GAP is originally thought to antagonize vesicle formation by triggering uncoating, but later studies suggest that GAP promotes cargo sorting, a process that occurs during vesicle formation. Recent models have attempted to reconcile these seemingly contradictory roles by suggesting that cargo proteins suppress GAP activity during vesicle formation, but whether GAP truly antagonizes coat recruitment in this process has not been assessed directly. We have reconstituted the formation of COPI vesicles by incubating Golgi membrane with purified soluble components, and find that ARFGAP1 in the presence of GTP promotes vesicle formation and cargo sorting. Moreover, the presence of GTPγS not only blocks vesicle uncoating but also vesicle formation by preventing the proper recruitment of GAP to nascent vesicles. Elucidating how GAP functions in vesicle formation, we find that the level of GAP on the reconstituted vesicles is at least as abundant as COPI and that GAP binds directly to the dilysine motif of cargo proteins. Collectively, these findings suggest that ARFGAP1 promotes vesicle formation by functioning as a component of the COPI coat.



1998 ◽  
Vol 140 (5) ◽  
pp. 1055-1062 ◽  
Author(s):  
Alexandre Benmerah ◽  
Christophe Lamaze ◽  
Bernadette Bègue ◽  
Sandra L. Schmid ◽  
Alice Dautry-Varsat ◽  
...  

We have previously shown that the protein Eps15 is constitutively associated with the plasma membrane adaptor complex, AP-2, suggesting its possible role in endocytosis. To explore the role of Eps15 and the function of AP-2/Eps15 association in endocytosis, the Eps15 binding domain for AP-2 was precisely delineated. The entire COOH-terminal domain of Eps15 or a mutant form lacking all the AP-2–binding sites was fused to the green fluorescent protein (GFP), and these constructs were transiently transfected in HeLa cells. Overexpression of the fusion protein containing the entire COOH-terminal domain of Eps15 strongly inhibited endocytosis of transferrin, whereas the fusion protein in which the AP-2–binding sites had been deleted had no effect. These results were confirmed in a cell-free assay that uses perforated A431 cells to follow the first steps of coated vesicle formation at the plasma membrane. Addition of Eps15-derived glutathione-S-transferase fusion proteins containing the AP-2–binding site in this assay inhibited not only constitutive endocytosis of transferrin but also ligand-induced endocytosis of epidermal growth factor. This inhibition could be ascribed to a competition between the fusion protein and endogenous Eps15 for AP-2 binding. Altogether, these results show that interaction of Eps15 with AP-2 is required for efficient receptor-mediated endocytosis and thus provide the first evidence that Eps15 is involved in the function of plasma membrane–coated pits.



2003 ◽  
Vol 14 (2) ◽  
pp. 516-528 ◽  
Author(s):  
Xufeng Wu ◽  
Xiaohong Zhao ◽  
Rosa Puertollano ◽  
Juan S. Bonifacino ◽  
Evan Eisenberg ◽  
...  

We previously demonstrated, using fluorescence recovery after photobleaching, that clathrin in clathrin-coated pits at the plasma membrane exchanges with free clathrin in the cytosol, suggesting that clathrin-coated pits are dynamic structures. We now investigated whether clathrin at the trans-Golgi network as well as the clathrin adaptors AP2 and AP1 in clathrin-coated pits at the plasma membrane and trans-Golgi network, respectively, also exchange with free proteins in the cytosol. We found that when the budding of clathrin-coated vesicle is blocked without significantly affecting the structure of clathrin-coated pits, both clathrin and AP2 at the plasma membrane and clathrin and AP1 at thetrans-Golgi network exchange rapidly with free proteins in the cytosol. In contrast, when budding of clathrin-coated vesicles was blocked at the plasma membrane or trans-Golgi network by hypertonic sucrose or K+ depletion, conditions that markedly affect the structure of clathrin-coated pits, clathrin exchange was blocked but AP2 at the plasma membrane and both AP1 and the GGA1 adaptor at the trans-Golgi network continue to rapidly exchange. We conclude that clathrin-coated pits are dynamic structures with rapid exchange of both clathrin and adaptors and that adaptors are able to exchange independently of clathrin when clathrin exchange is blocked.



1983 ◽  
Vol 97 (2) ◽  
pp. 329-339 ◽  
Author(s):  
C Harding ◽  
J Heuser ◽  
P Stahl

At 4 degrees C transferrin bound to receptors on the reticulocyte plasma membrane, and at 37 degrees C receptor-mediated endocytosis of transferrin occurred. Uptake at 37 degrees C exceeded binding at 4 degrees C by 2.5-fold and saturated after 20-30 min. During uptake at 37 degrees C, bound transferrin was internalized into a trypsin-resistant space. Trypsinization at 4 degrees C destroyed surface receptors, but with subsequent incubation at 37 degrees C, surface receptors rapidly appeared (albeit in reduced numbers), and uptake occurred at a decreased level. After endocytosis, transferrin was released, apparently intact, into the extracellular space. At 37 degrees C colloidal gold-transferrin (AuTf) clustered in coated pits and then appeared inside various intracellular membrane-bounded compartments. Small vesicles and tubules were labeled after short (5-10 min) incubations at 37 degrees C. Larger multivesicular endosomes became heavily labeled after longer (20-35 min) incubations. Multivesicular endosomes apparently fused with the plasma membrane and released their contents by exocytosis. None of these organelles appeared to be lysosomal in nature, and 98% of intracellular AuTf was localized in acid phosphatase-negative compartments. AuTf, like transferrin, was released with subsequent incubation at 37 degrees C. Freeze-dried and freeze-fractured reticulocytes confirmed the distribution of AuTf in reticulocytes and revealed the presence of clathrin-coated patches amidst the spectrin coating the inner surface of the plasma membrane. These data suggest that transferrin is internalized via coated pits and vesicles and demonstrate that transferrin and its receptor are recycled back to the plasma membrane after endocytosis.



1986 ◽  
Vol 102 (1) ◽  
pp. 48-54 ◽  
Author(s):  
M S Robinson ◽  
B M Pearse

A family of coated vesicle proteins, with molecular weights of approximately 100,000 and designated 100K, has been implicated in both coat assembly and the attachment of clathrin to the vesicle membrane. These proteins were purified from extracts of bovine brain coated vesicles by gel filtration, hydroxylapatite chromatography, and preparative SDS PAGE. Peptide mapping by limited proteolysis indicated that the polypeptides making up the three major 100K bands have distinct amino acid sequences. When four rats were immunized with total 100K protein, each rat responded differently to the different bands, although all four antisera cross-reacted with the 100K proteins of human placental coated vesicles. After affinity purification, two of the antisera were able to detect a 100K band on blots of whole 3T3 cell protein and were used for immunofluorescence, double labeling the cells with either rabbit anti-clathrin or with wheat germ lectin as a Golgi apparatus marker. Both antisera gave staining that was coincident with anti-clathrin, with punctate labeling of the plasma membrane and perinuclear Golgi apparatus labeling. Thus, the 100K proteins are present on endocytic as well as Golgi-derived coated pits and vesicles. The punctate patterns were nearly identical with anti-100K and anti-clathrin, indicating that when vesicles become uncoated, the 100K proteins are removed as well as clathrin. One of the two antisera gave stronger plasma membrane labeling than Golgi apparatus labeling when compared with the anti-clathrin antiserum. The other antiserum gave stronger Golgi apparatus labeling. Although we have as yet no evidence that these two antisera label different proteins on blots of 3T3 cells, they do show differences on blots of bovine brain 100K proteins. This result, although preliminary, raises the possibility that different 100K proteins may be associated with different pathways of membrane traffic.



1996 ◽  
Vol 132 (1) ◽  
pp. 21-33 ◽  
Author(s):  
W Stoorvogel ◽  
V Oorschot ◽  
H J Geuze

Clathrin-coated vesicles transport selective integral membrane proteins from the plasma membrane to endosomes and from the TGN to endosomes. Recycling of proteins from endosomes to the plasma membrane occurs via unidentified vesicles. To study this pathway, we used a novel technique that allows for the immunoelectron microscopic examination of transferrin receptor-containing endosomes in nonsectioned cells. Endosomes were identified as separate discontinuous tubular-vesicular entities. Each endosome was decorated, mainly on the tubules, with many clathrin-coated buds. Endosome-associated clathrin-coated buds were discerned from plasma membrane-derived clathrin-coated vesicles by three criteria: size (60 nm and 100 nm, respectively), continuity with endosomes, and the lack of labeling for alpha-adaptin. They were also distinguished from TGN-derived clathrin-coated vesicles by their location at the periphery of the cell, size, and the lack of labeling for gamma-adaptin. In the presence of brefeldin A, a large continuous endosomal network was formed. Transferrin receptor recycling as well as the formation of clathrin-coated pits at endosomes was inhibited in the presence of brefeldin A. Together with the localization of transferrin receptors at endosome-associated buds, this indicates that a novel class of clathrin-coated vesicles serves an exit pathway from endosomes. The target organelles for endosome-derived clathrin-coated vesicles remain, however, to be identified.



1980 ◽  
Vol 84 (3) ◽  
pp. 560-583 ◽  
Author(s):  
J Heuser

Fibroblasts apparently ingest low density lipoproteins (LDL) by a selective mechanism of receptor-mediated endocytosis involving the formation of coated vesicles from the plasma membrane. However, it is not known exactly how coated vesicles collect LDL receptors and pinch off from the plasma membrane. In this report, the quick-freeze, deep-etch, rotary-replication method has been applied to fibroblasts; it displays with unusual clarity the coats that appear under the plasma membrane at the start of receptor-mediated endocytosis. These coats appear to be polygonal networks of 7-nm strands or struts arranged into 30-nm polygons, most of which are hexagons but some of which are 5- and 7-sided rings. The proportion of pentagons in each network increases as the coated area of the plasma membrane puckers up from its planar configuration (where the network is mostly hexagons) to its most sharply curved condition as a pinched-off coated vesicle. Coats around the smallest vesicles (which are icosahedrons of hexagons and pentagons) appear only slightly different from "empty coats" purified from homogenized brain, which are less symmetrical baskets containing more pentagons than hexagons. A search for structural intermediates in this coat transformation allows a test of T. Kanaseki and K. Kadota's (1969. J. Cell Biol. 42:202--220.) original idea that an internal rearrangement in this basketwork from hexagons to pentagons could "power" coated vesicle formation. The most noteworthy variations in the typical hexagonal honeycomb are focal juxtapositions of 5- and 7-sided polygons at points of partial contraction and curvature in the basketwork. These appear to precede complete contraction into individual pentagons completely surrounded by hexagons, which is the pattern that characterizes the final spherical baskets around coated vesicles.



Sign in / Sign up

Export Citation Format

Share Document