The plant nuclear envelope in focus

2010 ◽  
Vol 38 (1) ◽  
pp. 307-311 ◽  
Author(s):  
Katja Graumann ◽  
David E. Evans

Recent progress in understanding the plant NE (nuclear envelope) has resulted from significant advances in identifying and characterizing the protein constituents of the membranes and nuclear pores. Here, we review recent findings on the membrane integral and membrane-associated proteins of the key domains of the NE, the pore domain and inner and outer NEs, together with information on protein targeting and NE function.

Author(s):  
H. Ishigooka ◽  
S. Ueno ◽  
L.M. Hjelmeland ◽  
M.B. Landers ◽  
K. Ogawa

Introduction: We have demonstrated that Glucose-6-phosphatase (G6Pase) activity is localized to the endoplasmic reticulum and nuclear envelope of Mueller glia in the normal and pathological guinea pig retina. Using a combination of this cytochemical technique and high voltage electron microscopy, the distribution of nuclear pores could be clearly observed on the nuclear envelope of Mueller glia because of their anatomical lack of reaction products. This technique was developed to study the three-dimensional structure of nuclei and to calculate total numbers of nuclear pores utilizing a computer graphic analysis system in the normal and pathological retina.Materials and methods: Normal and photocoagulated retina of pigmented adult guinea pigs were perfused with a cold mixture of 0.25% glutaraldehyde and 2% paraformaldehyde in 0.1M cacodylate buffer, and the enucleated globes were hemisected and immersed in the same fixative for 30 min. After sectioning and incubation in the reaction medium for the detection of G6Pase activity by the method of Wachstein-Meisel, the sections were postfixed, dehydrated and embedded in Spurr’s epoxy resin. Serial thick sections (1.0um) were prepared for the observation by a Hitachi high voltage electron microscope (H 1250-M) with an accelerating voltage of 1000 Kv. and pictures were analyzed and three-dimensionally reconstructed by TRI (RATOC Co., Ltd.).


1976 ◽  
Vol 69 (1) ◽  
pp. 51-72 ◽  
Author(s):  
LG Tilney

At an early stage in spermiogenesis the acrosomal vacuole and other organelles including ribosomes are located at the basal end of the cell. From here actin must be transported to its future location at the anterior end of the cell. At no stage in the accumulation of actin in the periacrosomal region is the actin sequestered in a membrane-bounded compartment such as a vacuole or vesicle. Since filaments are not present in the periacrosomal region during the accumulation of the actin even though the fixation of these cells is sufficiently good to distinguish actin filaments in thin section, the actin must accumulate in the nonfilamentous state. The membranes in the periacrosomal region, specifically a portion of the nuclear envelope and the basal half of the acrosomal vacuole membrane, become specialized morphologically in advance of the accumulation of actin in this region. My working hypothesis is that the actin in combination with other substances binds to these specialized membranes and to itself and thus can accumulate in the periacrosmoal region by being trapped on these specialized membranes. Diffusion would then be sufficient to move these substances to this region. In support of this hypothesis are experiments in which I treated mature sperm with detergents, glycols, and hypotonic media, which solubilize or lift away the plasma membrane. The actin and its associated proteins remain attached to these specialized membranes. Thus actin can be nonrandomly distributed in cells in a nonfilamentous state presumably by its association with specialized membranes.


Author(s):  
Zhennan Fang ◽  
Huiqiang Wei ◽  
Wenfeng Gou ◽  
Leyuan Chen ◽  
Changfen Bi ◽  
...  

Nonapoptotic types of regulated cell death have attracted widespread interest since the discovery that certain forms of cell necrosis can be regulated. In particular, research into cell necroptosis has made significant progress in connection with kidney, inflammatory, degenerative and neoplastic diseases. Inhibitors targeting the critical necroptosis-associated proteins RIPK1/3 and MLKL have been in development for more than a decade. Herein the authors compile a list of the known small-molecule inhibitors of these enzymes and representative structures of compounds co-crystallized with these proteins and put forward some thoughts regarding their future development.


2018 ◽  
Author(s):  
Dimitra Panagaki ◽  
Richard Neutze ◽  
Johanna L. Höög

AbstractEukaryotic cells are defined by the compartmentalization of the cytoplasm into organelles, the largest of which is the nucleus, which contains the cellular DNA. Transport into and out of the nucleus is highly regulated and is traditionally thought to occur solely through nuclear pores. However, a small number of papers has repeatedly shown vesicular budding from the nuclear envelopes in different organisms. We used electron microscopy to identify such nuclear envelope budding events in a human cell line,Caenorhabditis elegansworms, the two yeastsSaccharomyces cerevisiaeandSchizosaccharomyces pombeand the parasitic protistTrypanosoma brucei. Progressing to electron tomography, the finer details of the 3D architecture of such budding events was revealed. We summarize all the organisms in which this mode of translocation over the nuclear envelope has been observed and conclude that this may be a fundamental, evolutionary conserved mechanism of transport inside eukaryotic cells.


1991 ◽  
Vol 99 (3) ◽  
pp. 515-521
Author(s):  
PEDRO LEÓN ◽  
JAMES KEZER ◽  
ERIC SCHABTACH

Large oocytes from some amphibian species possess beaded or unbeaded intranuclear tails that penetrate the extrachromosomal nucleoli through a distinct pit in their surface and attach to the central core component Here we show, using light and electron microscopy, that tails anchor nucleoli to the nuclear envelope through intricate attachment structures. These structures are composed of interconnected spherical masses containing highly convoluted tubules and associated extratubular proteins, directly directly in contact with the inner nuclear membrane. Fibers emerging from the nuclear pores seemingly hold the attachment complex in place. Beads on the nucleolar tails are formed by the accumulation of proteins on the outer surface of smooth tubules. The function of these intranuclear tubules is unknown


2001 ◽  
Vol 114 (20) ◽  
pp. 3643-3653 ◽  
Author(s):  
Madeleine Kihlmark ◽  
Gabriela Imreh ◽  
Einar Hallberg

We have produced new antibodies specific for the integral pore membrane protein POM121. Using these antibodies we show that during apoptosis POM121 becomes proteolytically degraded in a caspase-dependent manner. The POM121 antibodies and antibodies specific for other proteins of the nuclear envelope were used in a comparative study of nuclear apoptosis in staurosporine-treated buffalo rat liver cells. Nuclei from these cells were classified in three different stages of apoptotic progression: stage I, moderately condensed chromatin surrounded by a smooth nuclear periphery; stage II, compact patches of condensed chromatin collapsing against a smooth nuclear periphery; stage III, round compact chromatin bodies surrounded by grape-shaped nuclear periphery. We have performed double labeling immunofluorescence microscopy of individual apoptotic cells and quantitative immunoblotting analysis of total proteins from apoptotic cell cultures. The results showed that degradation of nuclear envelope marker proteins occurred in a specific order. POM121 degradation occurred surprisingly early and was initiated before nucleosomal DNA degradation could be detected using TUNEL assay and completed before clustering of the nuclear pores. POM121 was eliminated significantly more rapid compared with NUP153 (a peripheral protein located in the nucleoplasmic basket of the nuclear pore complex) and lamin B (a component of the nuclear lamina). Disappearance of NUP153 and lamin B was coincident with onset of DNA fragmentation and clustering of nuclear pores. By contrast, the peripheral NPC protein p62 was degraded much later. The results suggest that degradation of POM121 may be an important early step in propagation of nuclear apoptosis.


Author(s):  
John C. Lucchesi

The nuclear envelope is a double membrane sheath made up of two lipid bilayers—an outer and an inner membrane. The inner surface of the inner membrane is associated with a meshwork of filaments made up of lamins and of lamin-associated proteins that constitute the lamina. A substantial portion of the genome contacts the lamina through lamina-associated domains (LADs). LADs usually position silent or gene-poor regions of the genome near the lamina and nuclear membrane. The position of some LADs is different in some cells of the same tissue, reflecting the stochastic nature of gene activity; it can also change during differentiation, allowing the necessary activation of particular genes. Contact of transcription units with nuclear pores can result in activation or, sometimes, repression. Some of the proteins that contribute to the structure of the pores can activate transcription by associating with genes or with super-enhancers away from the nuclear membrane.


Sign in / Sign up

Export Citation Format

Share Document