The nuclear envelope

Author(s):  
John C. Lucchesi

The nuclear envelope is a double membrane sheath made up of two lipid bilayers—an outer and an inner membrane. The inner surface of the inner membrane is associated with a meshwork of filaments made up of lamins and of lamin-associated proteins that constitute the lamina. A substantial portion of the genome contacts the lamina through lamina-associated domains (LADs). LADs usually position silent or gene-poor regions of the genome near the lamina and nuclear membrane. The position of some LADs is different in some cells of the same tissue, reflecting the stochastic nature of gene activity; it can also change during differentiation, allowing the necessary activation of particular genes. Contact of transcription units with nuclear pores can result in activation or, sometimes, repression. Some of the proteins that contribute to the structure of the pores can activate transcription by associating with genes or with super-enhancers away from the nuclear membrane.

1982 ◽  
Vol 60 (11) ◽  
pp. 2440-2452 ◽  
Author(s):  
Lisa McKerracher ◽  
Sarah P. Gibbs

An ultrastructural investigation of cell and nuclear division in Cryptomonas sp. (θ) was made with particular emphasis on the mode of division of the chloroplast and nucleomorph. Mitosis is similar to that in other cryptomonads except that the nuclear envelope remains mostly intact. Division of the single chloroplast occurs in preprophase by constriction through the dorsal bridge. Frequently there is a lag between the division of the chloroplast and the division of its envelope of chloroplast endoplasmic reticulum. In addition, the inner membrane of the chloroplast endoplasmic reticulum may infold well in advance of the outer membrane.The nucleomorph is a unique double membrane limited organelle which is found in the periplastidal compartment of cryptomonads. It divides in preprophase following basal body replication but before division of the chloroplast and its chloroplast endoplasmic reticulum is complete. The inner membrane of the nucleomorph envelope invaginates first forming a double membraned baffle. The outer membrane invaginates next and completes division. Microtubules are not involved in nucleomorph division. None were observed and colchicine, which inhibited nuclear division, did not inhibit nucleomorph division. The theory that the nucleomorph is the residual nucleus of a former eukaryotic endosymbiont is reevaluated in light of these new observations.


2010 ◽  
Vol 84 (13) ◽  
pp. 6483-6496 ◽  
Author(s):  
Matthew S. Miller ◽  
Wendy E. Furlong ◽  
Leesa Pennell ◽  
Marc Geadah ◽  
Laura Hertel

ABSTRACT The products of numerous open reading frames (ORFs) present in the genome of human cytomegalovirus (CMV) have not been characterized. Here, we describe the identification of a new CMV protein localizing to the nuclear envelope and in cytoplasmic vesicles at late times postinfection. Based on this distinctive localization pattern, we called this new protein nuclear r im- as sociated c ytomegalovir al protein, or RASCAL. Two RASCAL isoforms exist, a short version of 97 amino acids encoded by the majority of CMV strains and a longer version of 176 amino acids encoded by the Towne, Toledo, HAN20, and HAN38 strains. Both isoforms colocalize with lamin B in deep intranuclear invaginations of the inner nuclear membrane (INM) and in novel cytoplasmic vesicular structures possibly derived from the nuclear envelope. INM infoldings have been previously described as sites of nucleocapsid egress, which is mediated by the localized disruption of the nuclear lamina, promoted by the activities of viral and cellular kinases recruited by the lamina-associated proteins UL50 and UL53. RASCAL accumulation at the nuclear membrane required the presence of UL50 but not of UL53. RASCAL and UL50 also appeared to specifically interact, suggesting that RASCAL is a new component of the nuclear egress complex (NEC) and possibly involved in mediating nucleocapsid egress from the nucleus. Finally, the presence of RASCAL within cytoplasmic vesicles raises the intriguing possibility that this protein might participate in additional steps of virion maturation occurring after capsid release from the nucleus.


2011 ◽  
Vol 39 (6) ◽  
pp. 1725-1728 ◽  
Author(s):  
Angelika A. Noegel ◽  
Sascha Neumann

Nesprins (nuclear envelope spectrin repeat proteins), also known as SYNE (synaptic nuclear envelope protein), MYNE (myocyte nuclear envelope protein), ENAPTIN and NUANCE, are proteins that are primarily components of the nuclear envelope. The nuclear envelope is a continuous membrane system composed of two lipid bilayers: an inner and an outer nuclear membrane. Nesprins are components of both nuclear membranes and reach into the nucleoplasm and the cytoplasm, where they undergo different interactions and have the potential to influence transcriptional processes and cytoskeletal activities.


2001 ◽  
Vol 153 (4) ◽  
pp. 709-724 ◽  
Author(s):  
Marcello Marelli ◽  
C. Patrick Lusk ◽  
Honey Chan ◽  
John D. Aitchison ◽  
Richard W. Wozniak

The nuclear pore complex (NPC) is a multicomponent structure containing a subset of proteins that bind nuclear transport factors or karyopherins and mediate their movement across the nuclear envelope. By altering the expression of a single nucleoporin gene, NUP53, we showed that the overproduction of Nup53p altered nuclear transport and had a profound effect on the structure of the nuclear membrane. Strikingly, conventional and immunoelectron microscopy analysis revealed that excess Nup53p entered the nucleus and associated with the nuclear membrane. Here, Nup53p induced the formation of intranuclear, tubular membranes that later formed flattened, double membrane lamellae structurally similar to the nuclear envelope. Like the nuclear envelope, the intranuclear double membrane lamellae enclosed a defined cisterna that was interrupted by pores but, unlike the nuclear envelope pores, they lacked NPCs. Consistent with this observation, we detected only two NPC proteins, the pore membrane proteins Pom152p and Ndc1p, in association with these membrane structures. Thus, these pores likely represent an intermediate in NPC assembly. We also demonstrated that the targeting of excess Nup53p to the NPC and its specific association with intranuclear membranes were dependent on the karyopherin Kap121p and the nucleoporin Nup170p. At the nuclear envelope, the abilities of Nup53p to associate with the membrane and drive membrane proliferation were dependent on a COOH-terminal segment containing a potential amphipathic α-helix. The implications of these results with regards to the biogenesis of the nuclear envelope are discussed.


2019 ◽  
Vol 20 (21) ◽  
pp. 5248 ◽  
Author(s):  
Mark Tingey ◽  
Krishna C. Mudumbi ◽  
Eric C. Schirmer ◽  
Weidong Yang

The nuclear envelope (NE) surrounds the nucleus with a double membrane in eukaryotic cells. The double membranes are embedded with proteins that are synthesized on the endoplasmic reticulum and often destined specifically for either the outer nuclear membrane (ONM) or the inner nuclear membrane (INM). These nuclear envelope transmembrane proteins (NETs) play important roles in cellular function and participate in transcription, epigenetics, splicing, DNA replication, genome architecture, nuclear structure, nuclear stability, nuclear organization, and nuclear positioning. These vital functions are dependent upon both the correct localization and relative concentrations of NETs on the appropriate membrane of the NE. It is, therefore, important to understand the distribution and abundance of NETs on the NE. This review will evaluate the current tools and methodologies available to address this important topic.


1976 ◽  
Vol 69 (1) ◽  
pp. 51-72 ◽  
Author(s):  
LG Tilney

At an early stage in spermiogenesis the acrosomal vacuole and other organelles including ribosomes are located at the basal end of the cell. From here actin must be transported to its future location at the anterior end of the cell. At no stage in the accumulation of actin in the periacrosomal region is the actin sequestered in a membrane-bounded compartment such as a vacuole or vesicle. Since filaments are not present in the periacrosomal region during the accumulation of the actin even though the fixation of these cells is sufficiently good to distinguish actin filaments in thin section, the actin must accumulate in the nonfilamentous state. The membranes in the periacrosomal region, specifically a portion of the nuclear envelope and the basal half of the acrosomal vacuole membrane, become specialized morphologically in advance of the accumulation of actin in this region. My working hypothesis is that the actin in combination with other substances binds to these specialized membranes and to itself and thus can accumulate in the periacrosmoal region by being trapped on these specialized membranes. Diffusion would then be sufficient to move these substances to this region. In support of this hypothesis are experiments in which I treated mature sperm with detergents, glycols, and hypotonic media, which solubilize or lift away the plasma membrane. The actin and its associated proteins remain attached to these specialized membranes. Thus actin can be nonrandomly distributed in cells in a nonfilamentous state presumably by its association with specialized membranes.


2017 ◽  
Vol 91 (22) ◽  
Author(s):  
Sebastian Rönfeldt ◽  
Barbara G. Klupp ◽  
Kati Franzke ◽  
Thomas C. Mettenleiter

ABSTRACT Newly assembled herpesvirus nucleocapsids are translocated from the nucleus to the cytosol by a vesicle-mediated process engaging the nuclear membranes. This transport is governed by the conserved nuclear egress complex (NEC), consisting of the alphaherpesviral pUL34 and pUL31 homologs. The NEC is not only required for efficient nuclear egress but also sufficient for vesicle formation from the inner nuclear membrane (INM), as well as from synthetic lipid bilayers. The recently solved crystal structures for the NECs from different herpesviruses revealed molecular details of this membrane deformation and scission machinery uncovering the interfaces involved in complex and coat formation. However, the interaction domain with the nucleocapsid remained undefined. Since the NEC assembles a curved hexagonal coat on the nucleoplasmic side of the INM consisting of tightly interwoven pUL31/pUL34 heterodimers arranged in hexamers, only the membrane-distal end of the NEC formed by pUL31 residues appears to be accessible for interaction with the nucleocapsid cargo. To identify the amino acids involved in capsid incorporation, we mutated the corresponding regions in the alphaherpesvirus pseudorabies virus (PrV). Site-specifically mutated pUL31 homologs were tested for localization, interaction with pUL34, and complementation of PrV-ΔUL31. We identified a conserved lysine residue at amino acid position 242 in PrV pUL31 located in the alpha-helical domain H10 exposed on the membrane-distal end of the NEC as a key residue for nucleocapsid incorporation into the nascent primary particle. IMPORTANCE Vesicular transport through the nuclear envelope is a focus of research but is still not well understood. Herpesviruses pioneered this mechanism for translocation of the newly assembled nucleocapsid from the nucleus into the cytosol via vesicles derived from the inner nuclear membrane which fuse in a well-tuned process with the outer nuclear membrane to release their content. The structure of the viral nuclear membrane budding and scission machinery has been solved recently, providing in-depth molecular details. However, how cargo is incorporated remained unclear. We identified a conserved lysine residue in the membrane-distal portion of the nuclear egress complex required for capsid uptake into inner nuclear membrane-derived vesicles.


2016 ◽  
Vol 215 (1) ◽  
pp. 5-8 ◽  
Author(s):  
Jan Lammerding ◽  
Katarina Wolf

Cells exhibit transient nuclear envelope ruptures during interphase, but the responsible biophysical processes remain unclear. In this issue, Hatch and Hetzer (2016. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201603053) show that actin fibers constrict the nucleus, causing chromatin protrusions and nuclear membrane ruptures at sites with nuclear lamina defects.


F1000Research ◽  
2018 ◽  
Vol 6 ◽  
pp. 1804 ◽  
Author(s):  
Peter Wild ◽  
Andres Kaech ◽  
Elisabeth M. Schraner ◽  
Ladina Walser ◽  
Mathias Ackermann

Background: Herpesvirus capsids are assembled in the nucleus, translocated to the perinuclear space by budding, acquiring tegument and envelope, or released to the cytoplasm via impaired nuclear envelope. One model proposes that envelopment, “de-envelopment” and “re-envelopment” is essential for production of infectious virus. Glycoproteins gB/gH were reported to be essential for de-envelopment, by fusion of the “primary” envelope with the outer nuclear membrane. Yet, a high proportion of enveloped virions generated from genomes with deleted gB/gH were found in the cytoplasm and extracellular space, suggesting the existence of alternative exit routes.Methods: We investigated the relatedness between the nuclear envelope and membranes of the endoplasmic reticulum and Golgi complex, in cells infected with either herpes simplex virus 1 (HSV-1) or a Us3 deletion mutant thereof, or with bovine herpesvirus 1 (BoHV-1) by transmission and scanning electron microscopy, employing freezing technique protocols.Results:  The Golgi complex is a compact entity in a juxtanuclear position covered by a membrane on thecisface. Golgi membranes merge with membranes of the endoplasmic reticulum forming an entity with the perinuclear space. All compartments contained enveloped virions. After treatment with brefeldin A, HSV-1 virions aggregated in the perinuclear space and endoplasmic reticulum, while infectious progeny virus was still produced.Conclusions: The data suggest that virions derived by budding at nuclear membranes are intraluminally transported from the perinuclear space via Golgi -endoplasmic reticulum transitions into Golgi cisternae for packaging. Virions derived by budding at nuclear membranes are infective like Us3 deletion mutants, which  accumulate in the perinuclear space. Therefore, i) de-envelopment followed by re-envelopment is not essential for production of infective progeny virus, ii) the process taking place at the outer nuclear membrane is budding not fusion, and iii) naked capsids gain access to the cytoplasmic matrix via impaired nuclear envelope as reported earlier.


Sign in / Sign up

Export Citation Format

Share Document