Modulation of tau pathology in tau transgenic models

2010 ◽  
Vol 38 (4) ◽  
pp. 996-1000 ◽  
Author(s):  
Jean-Pierre Brion ◽  
Kunie Ando ◽  
Céline Heraud ◽  
Karelle Leroy

NFTs (neurofibrillary tangles) in Alzheimer's disease and in tauopathies are hallmark neuropathological lesions whose relationship with neuronal dysfunction, neuronal death and with other lesions [such as Aβ (amyloid β-peptide) pathology] are still imperfectly understood. Many transgenic mice overexpressing wild-type or mutant tau proteins have been generated to investigate the physiopathology of tauopathies. Most of the mice overexpressing wild-type tau do not develop NFTs, but can develop a severe axonopathy, whereas overexpression of mutant tau leads to NFT formation, synaptic loss and neuronal death in several models. The association between neuronal death and NFTs has, however, been challenged in some models showing a dissociation between tau aggregation and tau toxicity. Cross-breeding of mice developing NFTs with mice developing Aβ deposits increases NFT pathology, highlighting the relationship between tau and amyloid pathology. On the other hand, tau expression seems to be necessary for expression of a pathological phenotype associated with amyloid pathology. These findings suggest that there is a bilateral cross-talk between Aβ and tau pathology. These observations are discussed by the presentation of some relevant models developed recently.

2020 ◽  
Author(s):  
Marie P. Schützmann ◽  
Filip Hasecke ◽  
Sarah Bachmann ◽  
Mara Zielinski ◽  
Sebastian Hänsch ◽  
...  

AbstractAmyloid-β peptide (Aβ) forms metastable oligomers >50 kD, termed AβOs or protofibrils, that are more effective than Aβ amyloid fibrils at triggering Alzheimer’s disease-related processes such as synaptic dysfunction and Tau pathology, including Tau mislocalization. In neurons, Aβ accumulates in endo-lysosomal vesicles at low pH. Here, we show that the rate of AβO assembly is accelerated 8,000-fold upon pH reduction from extracellular to endo-lysosomal pH, at the expense of amyloid fibril formation. The pH-induced promotion of AβO formation and the high endo-lysosomal Aβ concentration together enable extensive AβO formation of Aβ42 under physiological conditions. Exploiting the enhanced AβO formation of the dimeric Aβ variant dimAβ we furthermore demonstrate targeting of AβOs to dendritic spines, potent induction of Tau missorting, a key factor in tauopathies, and impaired neuronal activity. The results suggest that the endosomal/lysosomal system is a major site for the assembly of pathomechanistically relevant AβOs.


2010 ◽  
Vol 38 (4) ◽  
pp. 993-995 ◽  
Author(s):  
Frank M. LaFerla

Aβ (amyloid β-peptide) and tau are the main proteins that misfold and accumulate in amyloid plaques and NFTs (neurofibrillary tangles) of Alzheimer's disease and other neurological disorders. Historically, because plaques and NFTs accumulate in diverse cellular compartments, i.e. mainly extracellularly for plaques and intracellularly for NFTs, it was long presumed that the constituent proteins formed these lesions via unrelated pathways. Animal and cell studies over the last decade, however, have provided convincing evidence to show that Aβ can facilitate the development of tau pathology by altering several cell-dependent and -independent mechanisms. In the present article, results are reviewed from several laboratories that show that modulating Aβ pathology can directly affect the development of tau pathology, which has significant implications for the treatment of Alzheimer's disease.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Yanxing Chen ◽  
Shuai Zhao ◽  
Ziqi Fan ◽  
Zheyu Li ◽  
Yueli Zhu ◽  
...  

Abstract Background The neuropathological hallmarks of Alzheimer’s disease (AD) are amyloid-β (Aβ) plaques and neurofibrillary tangles (NFTs). The amyloid cascade theory is the leading hypothesis of AD pathology. Aβ deposition precedes the aggregation of tau pathology and Aβ pathology precipitates tau pathology. Evidence also indicates the reciprocal interactions between amyloid and tau pathology. However, the detailed relationship between amyloid and tau pathology in AD remains elusive. Metformin might have a positive effect on cognitive impairments. However, whether metformin can reduce AD-related pathologies is still unconclusive. Methods Brain extracts containing tau aggregates were unilaterally injected into the hippocampus and the overlying cerebral cortex of 9-month-old APPswe/PS1DE9 (APP/PS1) mice and age-matched wild-type (WT) mice. Metformin was administrated in the drinking water for 2 months. Aβ pathology, tau pathology, plaque-associated microgliosis, and autophagy marker were analyzed by immunohistochemical staining and immunofluorescence analysis 2 months after injection of proteopathic tau seeds. The effects of metformin on both pathologies were explored. Results We observed tau aggregates in dystrophic neurites surrounding Aβ plaques (NP tau) in the bilateral hippocampi and cortices of tau-injected APP/PS1 mice but not WT mice. Aβ plaques promoted the aggregation of NP tau pathology. Injection of proteopathic tau seeds exacerbated Aβ deposits and decreased the number of microglia around Aβ plaques in the hippocampus and cortex of APP/PS1 mice. Metformin ameliorated the microglial autophagy impairment, increased the number of microglia around Aβ plaques, promoted the phagocytosis of NP tau, and reduced Aβ load and NP tau pathology in APP/PS1 mice. Conclusion These findings indicate the existence of the crosstalk between amyloid and NP tau pathology. Metformin promoted the phagocytosis of pathological Aβ and tau proteins by enhancing microglial autophagy capability. It reduced Aβ deposits and limited the spreading of NP tau pathology in APP/PS1 mice, which exerts a beneficial effect on both pathologies.


2010 ◽  
Vol 433 (2) ◽  
pp. 323-332 ◽  
Author(s):  
Panchanan Maiti ◽  
Roberto Piacentini ◽  
Cristian Ripoli ◽  
Claudio Grassi ◽  
Gal Bitan

Aβ (amyloid β-peptide) is believed to cause AD (Alzheimer's disease). Aβ42 (Aβ comprising 42 amino acids) is substantially more neurotoxic than Aβ40 (Aβ comprising 40 amino acids), and this increased toxicity correlates with the existence of unique Aβ42 oligomers. Met35 oxidation to sulfoxide or sulfone eliminates the differences in early oligomerization between Aβ40 and Aβ42. Met35 oxidation to sulfoxide has been reported to decrease Aβ assembly kinetics and neurotoxicity, whereas oxidation to sulfone has rarely been studied. Based on these data, we expected that oxidation of Aβ to sulfone would also decrease its toxicity and assembly kinetics. To test this hypothesis, we compared systematically the effect of the wild-type, sulfoxide and sulfone forms of Aβ40 and Aβ42 on neuronal viability, dendritic spine morphology and macroscopic Ca2+ currents in primary neurons, and correlated the data with assembly kinetics. Surprisingly, we found that, in contrast with Aβ-sulfoxide, Aβ-sulfone was as toxic and aggregated as fast, as wild-type Aβ. Thus, although Aβ-sulfone is similar to Aβ-sulfoxide in its dipole moment and oligomer size distribution, it behaves similarly to wild-type Aβ in its aggregation kinetics and neurotoxicity. These surprising data decouple the toxicity of oxidized Aβ from its initial oligomerization, and suggest that our current understanding of the effect of methionine oxidation in Aβ is limited.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Marie P. Schützmann ◽  
Filip Hasecke ◽  
Sarah Bachmann ◽  
Mara Zielinski ◽  
Sebastian Hänsch ◽  
...  

AbstractAmyloid-β peptide (Aβ) forms metastable oligomers >50 kDa, termed AβOs, that are more effective than Aβ amyloid fibrils at triggering Alzheimer’s disease-related processes such as synaptic dysfunction and Tau pathology, including Tau mislocalization. In neurons, Aβ accumulates in endo-lysosomal vesicles at low pH. Here, we show that the rate of AβO assembly is accelerated 8,000-fold upon pH reduction from extracellular to endo-lysosomal pH, at the expense of amyloid fibril formation. The pH-induced promotion of AβO formation and the high endo-lysosomal Aβ concentration together enable extensive AβO formation of Aβ42 under physiological conditions. Exploiting the enhanced AβO formation of the dimeric Aβ variant dimAβ we furthermore demonstrate targeting of AβOs to dendritic spines, potent induction of Tau missorting, a key factor in tauopathies, and impaired neuronal activity. The results suggest that the endosomal/lysosomal system is a major site for the assembly of pathomechanistically relevant AβOs.


2014 ◽  
Vol 56 ◽  
pp. 99-110 ◽  
Author(s):  
David Allsop ◽  
Jennifer Mayes

One of the hallmarks of AD (Alzheimer's disease) is the formation of senile plaques in the brain, which contain fibrils composed of Aβ (amyloid β-peptide). According to the ‘amyloid cascade’ hypothesis, the aggregation of Aβ initiates a sequence of events leading to the formation of neurofibrillary tangles, neurodegeneration, and on to the main symptom of dementia. However, emphasis has now shifted away from fibrillar forms of Aβ and towards smaller and more soluble ‘oligomers’ as the main culprit in AD. The present chapter commences with a brief introduction to the disease and its current treatment, and then focuses on the formation of Aβ from the APP (amyloid precursor protein), the genetics of early-onset AD, which has provided strong support for the amyloid cascade hypothesis, and then on the development of new drugs aimed at reducing the load of cerebral Aβ, which is still the main hope for providing a more effective treatment for AD in the future.


2014 ◽  
Vol 56 ◽  
pp. 69-83 ◽  
Author(s):  
Ko-Fan Chen ◽  
Damian C. Crowther

The formation of amyloid aggregates is a feature of most, if not all, polypeptide chains. In vivo modelling of this process has been undertaken in the fruitfly Drosophila melanogaster with remarkable success. Models of both neurological and systemic amyloid diseases have been generated and have informed our understanding of disease pathogenesis in two main ways. First, the toxic amyloid species have been at least partially characterized, for example in the case of the Aβ (amyloid β-peptide) associated with Alzheimer's disease. Secondly, the genetic underpinning of model disease-linked phenotypes has been characterized for a number of neurodegenerative disorders. The current challenge is to integrate our understanding of disease-linked processes in the fly with our growing knowledge of human disease, for the benefit of patients.


2019 ◽  
Vol 16 (8) ◽  
pp. 710-722 ◽  
Author(s):  
Xiao-Ying Sun ◽  
Quan-Xiu Dong ◽  
Jie Zhu ◽  
Xun Sun ◽  
Li-Fan Zhang ◽  
...  

Background: Alzheimer’s Disease (AD) is characterized by the presence of extracellular amyloid-β (Aβ) plaques and intraneuronal neurofibrillary tangles assembled by the microtubuleassociated protein tau. Increasing evidence demonstrated that tau pathology played an important role in AD progression. Resveratrol (RSV) has previously proved to exert neuroprotective effect against AD by inhibiting Aβ generation and Aβ-induced neurocytotoxicity, while its effect on tau pathology is still unknown. Method: The effect of RSV on tau aggregation was measured by Thioflavin T fluorescence and Transmission electron microscope imaging. The effect of RSV on tau oligomer-induced cytotoxicity was assessed by MTT assay and the uptake of extracellular tau by N2a cells was determined by immunocytochemistry. 6-month-old male PS19 mice were treated with RSV or vehicle by oral administration (gavage) once a day for 5 weeks. The cognitive performance was determined using Morris water maze test, object recognition test and Y-maze test. The levels of phosphorylated-tau, gliosis, proinflammatory cytokines such as TNF-α and IL-1β, and synaptic proteins including synaptophysin and PSD95 in the brains of the mice were evaluated by immunoblotting, immunostaining and ELISA, respectively. Results: RSV significantly inhibited tau aggregation and tau oligomer-induced cytotoxicity, and blocked the uptake of extracellular tau oligomers by N2a cells. When applied to PS19 mice, RSV treatment effectively rescued cognitive deficits, reducing the levels of phosphorylated tau, neuroinflammation and synapse loss in the brains of mice. Conclusion: These findings suggest that RSV has promising therapeutic potential for AD and other tauopathies.


2021 ◽  
pp. 1-8
Author(s):  
Paul Theo Zebhauser ◽  
Achim Berthele ◽  
Marie-Sophie Franz ◽  
Oliver Goldhardt ◽  
Janine Diehl-Schmid ◽  
...  

Background: Tau proteins are established biomarkers of neuroaxonal damage in a wide range of neurodegenerative conditions. Although measurement of total-Tau in the cerebrospinal fluid is widely used in research and clinical settings, the relationship between age and total-Tau in the cerebrospinal fluid is yet to be fully understood. While past studies reported a correlation between age and total-Tau in the cerebrospinal fluid of healthy adults, in clinical practice the same cut-off value is used independently of patient’s age. Objective: To further explore the relationship between age and total-Tau and to disentangle neurodegenerative from drainage-dependent effects. Methods: We analyzed cerebrospinal fluid samples of 76 carefully selected cognitively healthy adults and included amyloid-β 1–40 as a potential marker of drainage from the brain’s interstitial system. Results: We found a significant correlation of total-Tau and age, which was no longer present when correcting total-Tau for amyloid-β 1–40 concentrations. These findings were replicated under varied inclusion criteria. Conclusion: Results call into question the association of age and total-Tau in the cerebrospinal fluid. Furthermore, they suggest diagnostic utility of amyloid-β 1–40 as a possible proxy for drainage-mechanisms into the cerebrospinal fluid when interpreting biomarker concentrations for neurodegenerative diseases.


Sign in / Sign up

Export Citation Format

Share Document