Prelamin A-mediated nuclear envelope dynamics in normal and laminopathic cells

2011 ◽  
Vol 39 (6) ◽  
pp. 1698-1704 ◽  
Author(s):  
Giovanna Lattanzi

Prelamin A is the precursor protein of lamin A, a major constituent of the nuclear lamina in higher eukaryotes. Increasing attention to prelamin A processing and function has been given after the discovery, from 2002 to 2004, of diseases caused by prelamin A accumulation. These diseases, belonging to the group of laminopathies and mostly featuring LMNA mutations, are characterized, at the clinical level, by different degrees of accelerated aging, and adipose tissue, skin and bone abnormalities. The outcome of studies conducted in the last few years consists of three major findings. First, prelamin A is processed at different rates under physiological conditions depending on the differentiation state of the cell. This means that, for instance, in muscle cells, prelamin A itself plays a biological role, besides production of mature lamin A. Secondly, prelamin A post-translational modifications give rise to different processing intermediates, which elicit different effects in the nucleus, mostly by modification of the chromatin arrangement. Thirdly, there is a threshold of toxicity, especially of the farnesylated form of prelamin A, whose accumulation is obviously linked to cell and organism senescence. The present review is focused on prelamin A-mediated nuclear envelope modifications that are upstream of chromatin dynamics and gene expression mechanisms regulated by the lamin A precursor.

Author(s):  
Laiyin Nie ◽  
Eric Spear ◽  
Timothy D. Babatz ◽  
Andrew Quigley ◽  
Yin Yao Dong ◽  
...  

AbstractHuman ZMPSTE24, an integral membrane zinc metalloprotease, is required for conversion of prelamin A to mature lamin A, a component of the nuclear lamina and failure of this processing causes premature ageing disorders. ZMPSTE24 has also been implicated in both type 2 diabetes mellitus and in viral-host response mechanisms, but to date its only confirmed substrate is the precursor for lamin A. Prelamin A is thought to undergo four C-terminal post-translational modifications in the following order: farnesylation, SIM tripeptide cleavage, carboxymethylation and upstream “SY^LL” cleavage. Here we present evidence that the sequence of events does not follow the accepted dogma. We assessed cleavage of long human prelamin A sequence peptides by purified human ZMPSTE24 combined with FRET and mass spectrometry to detect products. Surprisingly, we found that the “SY^LL” cleavage occurs before and independent of the C-terminal CSIM modifications. We also found that ZMPSTE24 does not perform the predicted C^SIM tripeptide cleavage, but rather it removes an IM dipeptide. ZMPSTE24 can perform a tripeptide cleavage with a canonical CaaX box (C: cysteine; a: aliphatic; X: any residue), but the C-terminus of prelamin A is not a true CaaX sequence. Regardless of the C-terminal modifications of prelamin A, ZMPSTE24 can perform upstream SY^LL cleavage, thus removing the unwanted farnesylated C-terminus. Therefore, it is failure of SY^LL cleavage, not the C-terminal processing that is the likely cause of progeroid disorders.


2014 ◽  
Vol 25 (8) ◽  
pp. 1287-1297 ◽  
Author(s):  
Yuxuan Guo ◽  
Youngjo Kim ◽  
Takeshi Shimi ◽  
Robert D. Goldman ◽  
Yixian Zheng

The nuclear lamina (NL) consists of lamin polymers and proteins that bind to the polymers. Disruption of NL proteins such as lamin and emerin leads to developmental defects and human diseases. However, the expression of multiple lamins, including lamin-A/C, lamin-B1, and lamin-B2, in mammals has made it difficult to study the assembly and function of the NL. Consequently, it has been unclear whether different lamins depend on one another for proper NL assembly and which NL functions are shared by all lamins or are specific to one lamin. Using mouse cells deleted of all or different combinations of lamins, we demonstrate that the assembly of each lamin into the NL depends primarily on the lamin concentration present in the nucleus. When expressed at sufficiently high levels, each lamin alone can assemble into an evenly organized NL, which is in turn sufficient to ensure the even distribution of the nuclear pore complexes. By contrast, only lamin-A can ensure the localization of emerin within the NL. Thus, when investigating the role of the NL in development and disease, it is critical to determine the protein levels of relevant lamins and the intricate shared or specific lamin functions in the tissue of interest.


2019 ◽  
Vol 28 (23) ◽  
pp. 3982-3996 ◽  
Author(s):  
Vered Shani ◽  
Hazem Safory ◽  
Raymonde Szargel ◽  
Ninghan Wang ◽  
Tsipora Cohen ◽  
...  

Abstract Mutations in LRRK2 cause autosomal dominant and sporadic Parkinson’s disease, but the mechanisms involved in LRRK2 toxicity in PD are yet to be fully understood. We found that LRRK2 translocates to the nucleus by binding to seven in absentia homolog (SIAH-1), and in the nucleus it directly interacts with lamin A/C, independent of its kinase activity. LRRK2 knockdown caused nuclear lamina abnormalities and nuclear disruption. LRRK2 disease mutations mostly abolish the interaction with lamin A/C and, similar to LRRK2 knockdown, cause disorganization of lamin A/C and leakage of nuclear proteins. Dopaminergic neurons of LRRK2 G2019S transgenic and LRRK2 −/− mice display decreased circularity of the nuclear lamina and leakage of the nuclear protein 53BP1 to the cytosol. Dopaminergic nigral and cortical neurons of both LRRK2 G2019S and idiopathic PD patients exhibit abnormalities of the nuclear lamina. Our data indicate that LRRK2 plays an essential role in maintaining nuclear envelope integrity. Disruption of this function by disease mutations suggests a novel phosphorylation-independent loss-of-function mechanism that may synergize with other neurotoxic effects caused by LRRK2 mutations.


2019 ◽  
Vol 63 (8-9-10) ◽  
pp. 509-519 ◽  
Author(s):  
Petros Batsios ◽  
Ralph Gräf ◽  
Michael P. Koonce ◽  
Denis A. Larochelle ◽  
Irene Meyer

The nuclear envelope consists of the outer and the inner nuclear membrane, the nuclear lamina and the nuclear pore complexes, which regulate nuclear import and export. The major constituent of the nuclear lamina of Dictyostelium is the lamin NE81. It can form filaments like B-type lamins and it interacts with Sun1, as well as with the LEM/HeH-family protein Src1. Sun1 and Src1 are nuclear envelope transmembrane proteins involved in the centrosome-nucleus connection and nuclear envelope stability at the nucleolar regions, respectively. In conjunction with a KASH-domain protein, Sun1 usually forms a so-called LINC complex. Two proteins with functions reminiscent of KASH-domain proteins at the outer nuclear membrane of Dictyostelium are known; interaptin which serves as an actin connector and the kinesin Kif9 which plays a role in the microtubule-centrosome connector. However, both of these lack the conserved KASH-domain. The link of the centrosome to the nuclear envelope is essential for the insertion of the centrosome into the nuclear envelope and the appropriate spindle formation. Moreover, centrosome insertion is involved in permeabilization of the mitotic nucleus, which ensures access of tubulin dimers and spindle assembly factors. Our recent progress in identifying key molecular players at the nuclear envelope of Dictyostelium promises further insights into the mechanisms of nuclear envelope dynamics.


Molecules ◽  
2020 ◽  
Vol 25 (4) ◽  
pp. 979 ◽  
Author(s):  
Justin M. Rectenwald ◽  
Shiva Krishna Reddy Guduru ◽  
Zhao Dang ◽  
Leonard B. Collins ◽  
Yi-En Liao ◽  
...  

Chromatin structure and function, and consequently cellular phenotype, is regulated in part by a network of chromatin-modifying enzymes that place post-translational modifications (PTMs) on histone tails. These marks serve as recruitment sites for other chromatin regulatory complexes that ‘read’ these PTMs. High-quality chemical probes that can block reader functions of proteins involved in chromatin regulation are important tools to improve our understanding of pathways involved in chromatin dynamics. Insight into the intricate system of chromatin PTMs and their context within the epigenome is also therapeutically important as misregulation of this complex system is implicated in numerous human diseases. Using computational methods, along with structure-based knowledge, we have designed and constructed a focused DNA-Encoded Library (DEL) containing approximately 60,000 compounds targeting bi-valent methyl-lysine (Kme) reader domains. Additionally, we have constructed DNA-barcoded control compounds to allow optimization of selection conditions using a model Kme reader domain. We anticipate that this target-class focused approach will serve as a new method for rapid discovery of inhibitors for multivalent chromatin reader domains.


2019 ◽  
Vol 5 (3) ◽  
pp. eaav5078 ◽  
Author(s):  
Ying Ao ◽  
Jie Zhang ◽  
Zuojun Liu ◽  
Minxian Qian ◽  
Yao Li ◽  
...  

Defective nuclear lamina protein lamin A is associated with premature aging. Casein kinase 2 (CK2) binds the nuclear lamina, and inhibiting CK2 activity induces cellular senescence in cancer cells. Thus, it is feasible that lamin A and CK2 may cooperate in the aging process. Nuclear CK2 localization relies on lamin A and the lamin A carboxyl terminus physically interacts with the CK2α catalytic core and inhibits its kinase activity. Loss of lamin A inLmna-knockout mouse embryonic fibroblasts (MEFs) confers increased CK2 activity. Conversely, prelamin A that accumulates inZmpste24-deficent MEFs exhibits a high CK2α binding affinity and concomitantly reduces CK2 kinase activity. Permidine treatment activates CK2 by releasing the interaction between lamin A and CK2, promoting DNA damage repair and ameliorating progeroid features. These data reveal a previously unidentified function for nuclear lamin A and highlight an essential role for CK2 in regulating senescence and aging.


1992 ◽  
Vol 89 (7) ◽  
pp. 3000-3004 ◽  
Author(s):  
R. J. Lutz ◽  
M. A. Trujillo ◽  
K. S. Denham ◽  
L. Wenger ◽  
M. Sinensky
Keyword(s):  
Lamin A ◽  

2022 ◽  
Vol 15 (1) ◽  
Author(s):  
Ya-Hui Chi ◽  
Wan-Ping Wang ◽  
Ming-Chun Hung ◽  
Gunn-Guang Liou ◽  
Jing-Ya Wang ◽  
...  

AbstractThe cause of nuclear shape abnormalities which are often seen in pre-neoplastic and malignant tissues is not clear. In this study we report that deformation of the nucleus can be induced by TGFβ1 stimulation in several cell lines including Huh7. In our results, the upregulated histone H3.3 expression downstream of SMAD signaling contributed to TGFβ1-induced nuclear deformation, a process of which requires incorporation of the nuclear envelope (NE) proteins lamin B1 and SUN1. During this process, the NE constitutively ruptured and reformed. Contrast to lamin B1 which was relatively stationary around the nucleus, the upregulated lamin A was highly mobile, clustering at the nuclear periphery and reintegrating into the nucleoplasm. The chromatin regions that lost NE coverage formed a supra-nucleosomal structure characterized by elevated histone H3K27me3 and histone H1, the formation of which depended on the presence of lamin A. These results provide evidence that shape of the nucleus can be modulated through TGFβ1-induced compositional changes in the chromatin and nuclear lamina.


Sign in / Sign up

Export Citation Format

Share Document