scholarly journals Astrocytes and neuroinflammation in Alzheimer's disease

2014 ◽  
Vol 42 (5) ◽  
pp. 1321-1325 ◽  
Author(s):  
Emma C. Phillips ◽  
Cara L. Croft ◽  
Ksenia Kurbatskaya ◽  
Michael J. O’Neill ◽  
Michael L. Hutton ◽  
...  

Increased production of amyloid β-peptide (Aβ) and altered processing of tau in Alzheimer's disease (AD) are associated with synaptic dysfunction, neuronal death and cognitive and behavioural deficits. Neuroinflammation is also a prominent feature of AD brain and considerable evidence indicates that inflammatory events play a significant role in modulating the progression of AD. The role of microglia in AD inflammation has long been acknowledged. Substantial evidence now demonstrates that astrocyte-mediated inflammatory responses also influence pathology development, synapse health and neurodegeneration in AD. Several anti-inflammatory therapies targeting astrocytes show significant benefit in models of disease, particularly with respect to tau-associated neurodegeneration. However, the effectiveness of these approaches is complex, since modulating inflammatory pathways often has opposing effects on the development of tau and amyloid pathology, and is dependent on the precise phenotype and activities of astrocytes in different cellular environments. An increased understanding of interactions between astrocytes and neurons under different conditions is required for the development of safe and effective astrocyte-based therapies for AD and related neurodegenerative diseases.

2014 ◽  
Vol 42 (5) ◽  
pp. 1316-1320 ◽  
Author(s):  
Amy M. Birch

Astrocytes were historically classified as supporting cells; however, it is becoming increasingly clear that they actively contribute to neuronal functioning under normal and pathological conditions. As interest in the contribution of neuroinflammation to Alzheimer's disease (AD) progression has grown, manipulating glial cells has become an attractive target for future therapies. Astrocytes have largely been under-represented in studies that assess the role of glia in these processes, despite substantial evidence of astrogliosis in AD. The actual role of astrocytes in AD remains elusive, as they seem to adopt different functions dependent on disease progression and the extent of accompanying parenchymal inflammation. Astrocytes may contribute to the clearance of amyloid β-peptide (Aβ) and restrict the spread of inflammation in the brain. Conversely, they may contribute to neurodegeneration in AD by releasing neurotoxins and neglecting crucial metabolic roles. The present review summarizes current evidence on the multi-faceted functions of astrocytes in AD, highlighting the significant scope available for future therapeutic targets.


2020 ◽  
Vol 17 ◽  
Author(s):  
Padilla-Zambrano H ◽  
García-Ballestas E ◽  
Quiñones-Ossa GA ◽  
Sibaja-Perez A ◽  
Agrawal A ◽  
...  

: Recent studies have recognized similarities between the peptides involved in the neuropathology of Alzheimer’s disease and prions. The Tau protein and the Amyloid β peptide represent the theoretical pillars of Alzheimer’s disease development. It is probable that there is a shared mechanism for the transmission of these substances and the prion diseases development; this presumption is based on the presentation of several cases of individuals without risk factors who developed dementia decades after a neurosurgical procedure. This article aims to present the role of Aβ and Tau, which underlie the pathophysiologic mechanisms involved in the AD and their similarities with the prion diseases infective mechanisms by means of the presentation of the available evidence at molecular (in-vitro), animal, and human levels that support the controversy on whether these diseases might be transmitted in neurosurgical interventions, which may constitute a wide public health issue.


2016 ◽  
Vol 6 (5) ◽  
pp. 345-348 ◽  
Author(s):  
Deepak Kumar Vijaya Kumar ◽  
William A Eimer ◽  
Rudolph E Tanzi ◽  
Robert D Moir

Metallomics ◽  
2015 ◽  
Vol 7 (3) ◽  
pp. 536-543 ◽  
Author(s):  
Timothy M. Ryan ◽  
Nigel Kirby ◽  
Haydyn D. T. Mertens ◽  
Blaine Roberts ◽  
Kevin J. Barnham ◽  
...  

Research into causes of Alzheimer's disease and its treatment has produced a tantalising array of hypotheses about the role of transition metal dyshomeostasis, many of them on the interaction of these metals with the neurotoxic amyloid-β peptide (Aβ).


2000 ◽  
Vol 62 (6) ◽  
pp. 633-648 ◽  
Author(s):  
Soledad Miranda ◽  
Carlos Opazo ◽  
Luis F Larrondo ◽  
Francisco J Muñoz ◽  
Francisca Ruiz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document