scholarly journals Split for the cure: VEGF, PDGF-BB and intussusception in therapeutic angiogenesis

2014 ◽  
Vol 42 (6) ◽  
pp. 1637-1642 ◽  
Author(s):  
Roberto Gianni-Barrera ◽  
Mariateresa Bartolomeo ◽  
Brigitte Vollmar ◽  
Valentin Djonov ◽  
Andrea Banfi

Therapeutic angiogenesis is an attractive strategy to treat patients suffering from ischaemic conditions and vascular endothelial growth factor-A (VEGF) is the master regulator of blood vessel growth. However, VEGF can induce either normal or aberrant angiogenesis depending on its dose localized in the microenvironment around each producing cell in vivo and on the balanced stimulation of platelet-derived growth factor-BB (PDGF-BB) signalling, responsible for pericyte recruitment. At the doses required to induce therapeutic benefit, VEGF causes new vascular growth essentially without sprouting, but rather through the alternative process of intussusception, or vascular splitting. In the present article, we briefly review the therapeutic implications of controlling VEGF dose on one hand and pericyte recruitment on the other, as well as the key features of intussusceptive angiogenesis and its regulation.

2009 ◽  
Vol 29 (10) ◽  
pp. 1620-1643 ◽  
Author(s):  
Dirk Matthias Hermann ◽  
Anil Zechariah

Neurovascular remodeling has been recently recognized as a promising target for neurologic therapies. Hopes have emerged that, by stimulating vessel growth, it may be possible to stabilize brain perfusion, and at the same time promote neuronal survival, brain plasticity, and neurologic recovery. In this review, we outline the role of vascular endothelial growth factor (VEGF) in the ischemic brain, analyzing how this growth factor contributes to brain remodeling. Studies with therapeutic VEGF administration resulted in quite variable results depending on the route and time point of delivery. Local VEGF administration consistently enhanced neurologic recovery, whereas acute intravenous delivery exacerbated brain infarcts due to enhanced brain edema. Future studies should answer the following questions: (1) whether increased vessel density translates into improvements in blood flow in the hemodynamically compromised brain; (2) how VEGF influences brain plasticity and contributes to motor and nonmotor recovery; (3) what are the actions of VEGF not only in young animals with preserved vasculature, on which previous studies have been conducted, but also in aged animals and in animals with preexisting atherosclerosis; and (4) whether the effects of VEGF can be mimicked by pharmacological compounds or by cell-based therapies. Only on the basis of such information can more definite conclusions be made with regard to whether the translation of therapeutic angiogenesis into clinics is promising.


2017 ◽  
Vol 68 (4) ◽  
pp. 326-329
Author(s):  
Piotr Barć ◽  
Tomasz Płonek ◽  
Dagmara Baczyńska ◽  
Artur Pupka ◽  
Wojciech Witkiewicz ◽  
...  

Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Elena Groppa ◽  
Veronica Sacchi ◽  
Sime Brkic ◽  
Marianna Trani ◽  
Michael Heberer ◽  
...  

Vascular Endothelial Growth Factor-A (VEGF) is the master regulator of vascular growth and it can induce either normal or aberrant angiogenesis depending on its dose in the microenvironment around each producing cell in vivo, and not on the total amount. However, stimulation of pericyte recruitment by co-expression of Platelet Derived Growth Factor-BB (PDGF-BB) could prevent aberrant structures despite heterogeneous and high VEGF levels and switch to homogeneously normal angiogenesis. Here we dissected the role of specific pericyte-mediated signaling pathways in the switch between normal and aberrant angiogenesis by VEGF. Monoclonal populations of transduced myoblasts were used to homogeneously express specific VEGF doses, inducing either normal or aberrant angiogenesis, and were further transduced to secrete soluble blockers of the TGFβ-1/TGFβ-R, Tie2/Angiopoietin or EphB4/EphrinB2 pathways (LAP, sTie2Fc and sEphB4, respectively). Two weeks after implantation into mouse limb muscles, neither TGFβ nor Angiopoietin blockade altered the normal angiogenesis by low VEGF, whereas EphrinB2/EphB4 inhibition caused a switch to aberrant angioma-like structures, similar to the effects of blocking pericyte recruitment. Conversely, gain-of-function of EphB4 signaling by systemic treatment with recombinant EphrinB2-Fc completely prevented aberrant angiogenesis by high VEGF levels and yielded normal networks of mature capillaries. We recently found that VEGF over-expression in muscle induces angiogenesis without sprouting, but by circumferential enlargement and longitudinal splitting (intussusception). EphB4 inhibition increased both endothelial proliferation and the diameter of initial enlargements induced by low VEGF (4 days), leading to a failure of splitting and progressive angioma growth. However, it did not interfere with pericyte recruitment, contrary to high VEGF alone. Conversely, EphB4 stimulation decreased both endothelial proliferation and the diameter of enlargements induced by high VEGF to values similar to low VEGF alone, and accelerated splitting into pericyte-covered capillary networks. In conclusion, EphrinB2/EphB4 signaling can prevent VEGF-induced aberrant angiogenesis by regulating intussusception.


Sign in / Sign up

Export Citation Format

Share Document