TSPAN7, effector of actin nucleation required for dendritic cell-mediated transfer of HIV-1 to T cells

2017 ◽  
Vol 45 (3) ◽  
pp. 703-708 ◽  
Author(s):  
Mickaël M. Ménager

Dendritic cells (DCs) have essential roles in early detection of pathogens and activation of both innate and adaptive immune responses. Whereas human DCs are resistant to productive HIV-1 replication, they have a unique ability to take up virus and transmit it efficiently to T lymphocytes. By doing that, HIV-1 may evade, at least in part, the first line of defense of the immune system, exploiting DCs instead to facilitate rapid infection of a large pool of immune cells. While performing an shRNA screen in human primary monocyte-derived DCs, to gain insights into this cell biological process, we discovered the role played by tetraspanin-7 (TSPAN7). This member of the tetraspanin family appears to be a positive regulator of actin nucleation and stabilization, through the ARP2/3 complex. By doing so, TSPAN7 limits HIV-1 endocytosis and maintains viral particles on actin-rich dendrites for an efficient transfer toward T lymphocytes. While studying the function of TSPAN7 in the control of actin nucleation, we also discovered the existence in DCs of two opposing forces at the plasma membrane: actin nucleation, a protrusive force which seems to counterbalance actomyosin contraction.

Blood ◽  
2012 ◽  
Vol 120 (18) ◽  
pp. 3708-3717 ◽  
Author(s):  
Bin Su ◽  
Ke Xu ◽  
Alexandre Lederle ◽  
Maryse Peressin ◽  
Marina Elizabeth Biedma ◽  
...  

AbstractDendritic cells (DCs) support only low levels of HIV-1 replication, but have been shown to transfer infectious viral particles highly efficiently to neighboring permissive CD4 T lymphocytes. This mode of cell-to-cell HIV-1 spread may be a predominant mode of infection and dissemination. In the present study, we analyzed the kinetics of fusion, replication, and the ability of HIV-1–specific Abs to inhibit HIV-1 transfer from immature DCs to autologous CD4 T lymphocytes. We found that neutralizing mAbs prevented HIV-1 transfer to CD4 T lymphocytes in trans and in cis, whereas nonneutralizing Abs did not. Neutralizing Abs also significantly decreased HIV-1 replication in DCs, even when added 2 hours after HIV-1 infection. Interestingly, a similar inhibition of HIV-1 replication in DCs was detected with some nonneutralizing Abs and was correlated with DC maturation. We suggest that the binding of HIV-1-specific Abs to FcγRs leads to HIV-1 inhibition in DCs by triggering DC maturation. This efficient inhibition of HIV-1 transfer by Abs highlights the importance of inducing HIV-specific Abs by vaccination directly at the mucosal portal of HIV-1 entry to prevent early dissemination after sexual transmission.


AIDS ◽  
2014 ◽  
Vol 28 (5) ◽  
pp. 667-677 ◽  
Author(s):  
Maryse Peressin ◽  
Alizé Proust ◽  
Sylvie Schmidt ◽  
Bin Su ◽  
Mélanie Lambotin ◽  
...  

2021 ◽  
Author(s):  
Catherine Inizan ◽  
Marina Caillet ◽  
Alexandra Desrames ◽  
Perrine Bomme ◽  
Adeline MALLET ◽  
...  

Collective transmission via structures containing several virions has recently emerged as a highly efficient mode of viral spread. Here, we demonstrate that HIV-1 spreads between T lymphocytes in the form of viral particles colonies that are concentrated and sheltered in an extracellular matrix (ECM) lattice enabling their collective transmission upon cell contacts. Intrinsically, ECM-clustered viruses infect T lymphocytes more efficiently than individual viral particles. They preserve HIV-1 transmission from antiretroviral treatment (ArT) and potent broadly neutralizing antibodies. We also show that collagen induced by HIV-1 infection controls the clustering of virions and their collective spread, thereby enhancing infectivity. CD4+ T cells from HIV-1-infected patients produce and transmit ECM-virus clusters, supporting that they could be involved in vivo. This study provides new insights into modes of HIV-1 transmission and identifies a novel fundamental role for collagen in this process. HIV-1 spread via ECM-virus clusters may have important implications for viral dissemination and persistence, including during therapy.


2019 ◽  
Vol 93 (11) ◽  
Author(s):  
Olivier Leymarie ◽  
Leslie Lepont ◽  
Margaux Versapuech ◽  
Delphine Judith ◽  
Sophie Abelanet ◽  
...  

ABSTRACTHIV-1 infection of macrophages leads to the sequestration of newly formed viruses in intracellular plasma membrane-connected structures termed virus-containing compartments (VCCs), where virions remain infectious and hidden from immune surveillance. The cellular restriction factor bone marrow stromal cell antigen 2 (BST2), which prevents HIV-1 dissemination by tethering budding viral particles at the plasma membrane, can be found in VCCs. The HIV-1 accessory protein Vpu counteracts the restriction factor BST2 by downregulating its expression and removing it from viral budding sites. Numerous studies described these Vpu countermeasures in CD4+T cells or model cell lines, but the interplay between Vpu and BST2 in VCC formation and HIV-1 production in macrophages is less explored. Here, we show that Vpu expression in HIV-1-infected macrophages enhances viral release. This effect is related to Vpu’s ability to circumvent BST2 antiviral activity. We show that in absence of Vpu, BST2 is enriched in VCCs and colocalizes with capsid p24, whereas Vpu expression significantly reduces the presence of BST2 in these compartments. Furthermore, our data reveal that BST2 is dispensable for the formation of VCCs and that Vpu expression impacts the volume of these compartments. This Vpu activity partly depends on BST2 expression and requires the integrity of the Vpu transmembrane domain, the dileucine-like motif E59XXXLV64and phosphoserines 52 and 56 of Vpu. Altogether, these results highlight that Vpu controls the volume of VCCs and promotes HIV-1 release from infected macrophages.IMPORTANCEHIV-1 infection of macrophages leads to the sequestration of newly formed viruses in virus-containing compartments (VCCs), where virions remain infectious and hidden from immune surveillance. The restriction factor BST2, which prevents HIV-1 dissemination by tethering budding viral particles, can be found in VCCs. The HIV-1 Vpu protein counteracts BST2. This study explores the interplay between Vpu and BST2 in the viral protein functions on HIV-1 release and viral particle sequestration in VCCs in macrophages. The results show that Vpu controls the volume of VCCs and favors viral particle release. These Vpu functions partly depend on Vpu’s ability to antagonize BST2. This study highlights that the transmembrane domain of Vpu and two motifs of the Vpu cytoplasmic domain are required for these functions. These motifs were notably involved in the control of the volume of VCCs by Vpu but were dispensable for the prevention of the specific accumulation of BST2 in these structures.


2021 ◽  
Vol 22 (16) ◽  
pp. 8366
Author(s):  
Ignacio Relaño-Rodríguez ◽  
María de la Sierra Espinar-Buitrago ◽  
Vanessa Martín-Cañadilla ◽  
Rafael Gómez-Ramírez ◽  
María Ángeles Muñoz-Fernández

Human immunodeficiency virus (HIV-1) is still a major problem, not only in developing countries but is also re-emerging in several developed countries, thus the development of new compounds able to inhibit the virus, either for prophylaxis or treatment, is still needed. Nanotechnology has provided the science community with several new tools for biomedical applications. G2-S16 is a polyanionic carbosilane dendrimer capable of inhibiting HIV-1 in vitro and in vivo by interacting directly with viral particles. One of the main barriers for HIV-1 eradication is the reservoirs created in primoinfection. These reservoirs, mainly in T cells, are untargetable by actual drugs or immune system. Thus, one approach is inhibiting HIV-1 from reaching these reservoir cells. In this context, macrophages play a main role as they can deliver viral particles to T cells establishing reservoirs. We showed that G2-S16 dendrimer is capable of inhibiting the infection from infected macrophages to healthy T CD4/CD8 lymphocytes by eliminating HIV-1 infectivity inside macrophages, so they are not able to carry infectious particles to other body locations, thus preventing the reservoirs from forming.


Sign in / Sign up

Export Citation Format

Share Document