Epitaxial Relationships in Urolithiasis: The Calcium Oxalate Monohydrate—Hydroxyapatite System

1975 ◽  
Vol 49 (5) ◽  
pp. 369-374 ◽  
Author(s):  
J. L. Meyer ◽  
J. H. Bergert ◽  
L. H. Smith

Chemical kinetic data, complemented with scanning electron-microscope observations of the crystalline phase, show that seed crystals of hydroxyapatite have the ability to induce the growth of calcium oxalate monohydrate crystals epitaxially from a metastable supersaturated solution of calcium oxalate. The rate of growth of calcium oxalate crystals is dependent on the surface area of the seed material and follows a second-order rate law. It is suggested that there may be a causal relationship between the occurrence of apatite crystals in the urinary tract and the formation of both ‘pure’ and mixed urinary stones containing calcium oxalate. Under similar experimental conditions, however, seed crystals of calcium oxalate monohydrate appeared unable to induce epitaxially the growth of calcium phosphate crystals from a supersaturated calcium phosphate solution, indicating the absence of an epitaxial relationship between calcium oxalate monohydrate and the initially precipitating calcium phosphate phase(s).

2021 ◽  
Vol 93 (3) ◽  
pp. 307-312
Author(s):  
Adam Hali´nski ◽  
Kamran Hassan Bhatti ◽  
Luca Boeri ◽  
Jonathan Cloutier ◽  
Kaloyan Davidoff ◽  
...  

Objective: To study urinary stone composition patterns in different populations around the world. Materials and methods: Data were collected by reviewing charts of 1204 adult patients of 10 countries with renal or ureteral stones (> 18 years) in whom a stone analysis was done and available. Any method of stone analysis was accepted, but the methodology had to be registered. Results: In total, we observed 710 (59%) patients with calcium oxalate, 31 (1%) with calcium phosphate, 161 (13%) with mixed calcium oxalate/calcium phosphate, 15 (1%) with carbapatite, 110 (9%) with uric acid, 7 (< 1%) with urate (ammonium or sodium), 100 (9%) with mixed with uric acid/ calcium oxalate, 56 (5%) with struvite and 14 (1%) with cystine stones. Calciumcontaining stones were the most common in all countries ranging from 43 to 91%. Oxalate stones were more common than phosphate or mixed phosphate/oxalate stones in most countries except Egypt and India. The rate of uric acid containing stones ranged from 4 to 34%, being higher in Egypt, India, Pakistan, Iraq, Poland and Bulgaria. Struvite stones occurred in less than 5% in all countries except India (23%) and Pakistan (16%). Cystine stones occurred in 1% of cases. Conclusions: The frequency of different types of urinary stones varies from country to country. Calcium-containing stones are prevalent in all countries. The frequency of uric acid containing stones seems to depend mainly on climatic factors, being higher in countries with desert or tropical climates. Dietary patterns can also lead to an increase in the frequency of uric acid containing stones in association with high obesity rates. Struvite stones are decreasing in most countries due to improved health conditions.


QJM ◽  
2021 ◽  
Vol 114 (Supplement_1) ◽  
Author(s):  
Ahmed Salah Mahmoud Ahmed Shehata ◽  
Mohamed Rafik El-Halaby ◽  
Ahmed Mohamed Saafan

Abstract Objectives to make a reliable correlation between the chemical composition of the urinary calculi and its Hounsfield unit on CT scan, upon which we can depend on it for prediction of the type of the urinary calculi. The prediction of the chemical structure of the stone would help us to reach a more efficient therapeutic and prophylactic plan. Methods A retrospective study was performed by interpretation of the preoperative CT scans for patients who were presented by urinary stones. Identification of the chemical structure of the calculi was implemented using Fourier Transform Infrared Spectroscopy (FT-IR spectroscopy). The laboratory report revealed multiple types of stones either of pure or mixed composition. Afterwards, a comparison was done between Hounsfield units of the stones and the chemical structure. Results The chemical structure of the urinary stones revealed four pure types of stones (Uric acid, Calcium Oxalate, Struvite and Cystine) and two types of mixed stones (mixed calcium oxalate+ Uric, and mixed calcium oxalate+ calcium phosphate). Uric acid stone had a mean Hounsfield Unit (HU) density of428 ± 81, which was quite less than the other stones, followed by struvite stones with density ranging about 714 ± 38. Mixed calcium oxalate stones could be differentiated from other types of stones like uric acid, pure calcium oxalate and struvite stones by the Hounsfield unit of Computed Tomography (the mean Hounsfield Unit was 886 ± 139 and 1427 ± 152 for mixed calcium oxalate + uric stone and mixed calcium oxalate + calcium phosphate stones respectively). Moreover, pure calcium oxalate stones were easily differentiated from all other stones using the mean Hounsfield density as it was 1158 ± 83. It was challenging only when it was compared to cystine stones, as they were quiet similar to HU value (997 ± 14). The variation of Hounsfield values among the previously mentioned stones, was statistically significant (p &lt; 0.001). Conclusion The study proved that the Hounsfield Unit of CT scanning is a convenient measure to predict the chemical structure of urinary calculi.


2014 ◽  
Vol 4 (4) ◽  
pp. 393-98
Author(s):  
Jayadevan Sreedharan ◽  
LJ John ◽  
HAM Aly Freeg ◽  
J Muttappallymyalil

Background   Ethnicity play a role in the occurrence of urinary stones, probably related to climatic, environmental and dietary factors in ethnic groups. The association between ethnicity, age, clinical profile, stone size with type of ureteric stones among males with urolithiasis was studied.   Materials and Methods Male patients (>18 years) with lower ureteral stones size <10mm attending outpatient department of Urology, at a private hospital, Ajman over a period of one year were included. Ethics approval was obtained from Institutional Ethics Committee. Data was retrieved from the case records which included socio-demographic variables (age, ethnicity), clinical profile (ureteric colic, duration of pain, other complaints), and laboratory investigations (type of stone, stone size). Descriptive and inferential statistics were performed with SPSS-20 and p values <0.05 considered significant. Results 185 male patients were included. Mean age was 41.5 (7.3) years, range (22-71) years. Out of the total, 81 (43.8%) patients were Asians, 81(43.8%) Arabs and 23 (12.4%) were of other ethnicity. Most patients (95.1%) presented with ureteric pain. 49 (26.5%) had family history of stone disease where calcium oxalate monohydrate and uric acid stones were common, with majority being first degree relation. Data on stone type was available for 90 patients; of which, 21 were calcium oxalate monohydrate, 33-calcium oxalate dehydrate, 24-uric acid and remaining 12 other form of stones. Average age for different types of stone was 38.3, 41.6, 39.4 and 42.8 years for calcium oxalate monohydrate, calcium oxalate dehydrate, uric acid and other types respectively. Conclusion Uric acid stones were more prevalent among Asians and calcium oxalate-dehydrate stones among Arabs. Future studies can be conducted among multiethnic population focusing on dietary pattern and stone analysis.DOI: http://dx.doi.org/10.3126/nje.v4i4.11359 Nepal Journal of Epidemiology 2014; 4(4):393-98


1977 ◽  
Vol 52 (2) ◽  
pp. 143-148 ◽  
Author(s):  
J. L. Meyer ◽  
J. H. Bergert ◽  
L. H. Smith

1. Whewellite (calcium oxalate monohydrate) crystals were found to induce epitaxially the heterogeneous nucleation of brushite (calcium monohydrogen phosphate dihydrate) from its metastable supersaturated solution in approximately one-quarter of the time required for spontaneous precipitation in the absence of added nucleating agents. Scanning electron-microscope observation of the crystalline phase showed brushite crystals originating from the whewellite seed crystals. 2. Crystal growth, upon nucleation, proceeded rapidly, and the metastable solutions quickly approached saturation. 3. Brushite crystals also induced the precipitation of calcium oxalate crystals in about one-quarter of the time required for spontaneous precipitation; however, the rate of crystal growth was considerably slower. In support of the chemical data, scanning electron micrographs showed few crystals of calcium oxalate nucleated on the surface of the brushite seed. 4. The results provide some insight into the cause of stones containing calcium oxalate or calcium phosphate (or both), which form in the normally acid environment of human urine.


2007 ◽  
Vol 293 (6) ◽  
pp. F1935-F1943 ◽  
Author(s):  
Lan Mo ◽  
Lucy Liaw ◽  
Andrew P. Evan ◽  
Andre J. Sommer ◽  
John C. Lieske ◽  
...  

Although often supersaturated with mineral salts such as calcium phosphate and calcium oxalate, normal urine possesses an innate ability to keep them from forming harmful crystals. This inhibitory activity has been attributed to the presence of urinary macromolecules, although controversies abound regarding their role, or lack thereof, in preventing renal mineralization. Here, we show that 10% of the mice lacking osteopontin (OPN) and 14.3% of the mice lacking Tamm-Horsfall protein (THP) spontaneously form interstitial deposits of calcium phosphate within the renal papillae, events never seen in wild-type mice. Lack of both proteins causes renal crystallization in 39.3% of the double-null mice. Urinalysis revealed elevated concentrations of urine phosphorus and brushite (calcium phosphate) supersaturation in THP-null and OPN/THP-double null mice, suggesting that impaired phosphorus handling may be linked to interstitial papillary calcinosis in THP- but not in OPN-null mice. In contrast, experimentally induced hyperoxaluria provokes widespread intratubular calcium oxalate crystallization and stone formation in OPN/THP-double null mice, while completely sparing the wild-type controls. Whole urine from OPN-, THP-, or double-null mice all possessed a dramatically reduced ability to inhibit the adhesion of calcium oxalate monohydrate crystals to renal epithelial cells. These data establish OPN and THP as powerful and functionally synergistic inhibitors of calcium phosphate and calcium oxalate crystallization in vivo and suggest that defects in either molecule may contribute to renal calcinosis and stone formation, an exceedingly common condition that afflicts up to 12% males and 5% females.


Author(s):  
Rama Kishan Saran ◽  
Pawan Katti ◽  
Kiran Mirdha ◽  
Sanya Saran ◽  
Rajendra Prasad Takhar

Background: Pediatric urolithiasis results in significant morbidity in later life. Incidence as well as site and chemical composition of calculi varies according to the changes in socio-economic conditions over time and the subsequent changes in dietary habits leading to a marked variation in the spectrum of urinary stone composition. To evaluate the spectrum of urinary stone composition in pediatric population from North-western India.Methods: This was a prospective observational study conducted between October 2013 and February 2019 which included pediatric patients with urolithiasis. Demographic and epidemiological characteristics including age, sex, geography, religion, socio-economic status, dietary habits were recorded. The location and sizes of stones were documented. The data was collected, analyzed and presented using summary statistics.Results: A total of 163 patients with urolithiasis were enrolled, of which 86 (53%) aged between 6 and 10 years, 49 (30%) aged between 11 and 14 years and 28 (17%) were aged between 0 and 5 years. The majority of patients were male (n=134; 82.21%). The most common location of the stone was urinary bladder (n=106; 65.03%) followed by kidney (n=33; 20.25%), urethra (n=16; 9.82%) and ureter (n=8; 4.91%). The upper tract (kidney and ureter) to the lower tract (bladder and urethra) stone ratio was 1:4. Stones with mixed composition were more than pure stones (73.62% versus 26.38%). The most common composition was the mixed stone of calcium oxalate, calcium phosphate and uric acid (n=36; 22.09%) followed by mixed stone of calcium oxalate monohydrate and dihydrate with uric acid (n=29; 17.79%), calcium oxalate and uric acid (n=25, 15.34%), calcium oxalate and calcium phosphate (n=20; 12.27%). Calcium oxalate was present in 80% of the stones, followed by uric acid in 7%, struvite in 6%, cystine in 3% and calcium phosphate in 2%.Conclusions: These results suggest that the prevalence of mixed stones with calcium oxalate as the predominant chemical component in the urinary stones of pediatric patients studied.


2020 ◽  
Author(s):  
Alberto Trinchieri ◽  
Alessandro Maletta ◽  
Giovanni Simonelli ◽  
Luca Boeri ◽  
Elisa De Lorenzis ◽  
...  

Abstract Introduction: An increase of the frequency of uric acid urinary stones compared to calcium-containing ones has been recently described. This study was aimed at assessing the frequency of different types of urinary stones in the population of northern Italy in the period 2016-18 compared to 2001-2003. Materials and Methods: Analyses by infrared spectroscopy of 1007 stones endoscopically removed at two institutions in the area of Milan (Northern Italy) were retrospectively considered. Stones were classified as calcium oxalate monohydrate (COM) and dihydrate (COD), mixed uric acid/calcium oxalate (UC); uric acid (UA), struvite (ST); apatite (CAP); mixed calcium oxalate / apatite (CAPOX); others. The patients were divided into two groups: 2001-2003 and 2016-2018. The average temperature values of the region over the two time periods were obtained by the national statistical institute. Results: The average age of the 2001-2003 group (45.8+/-15.4 years) was significantly lower than the average age of the 2016-18 group (57.9+/-14.8) (0.000). M / F ratio was similar in the two groups: 119 / 69 (1:0.58) in 2001-2003 MI and 527 / 292 (1:0.55) in 2016-18 (p = 0.862). COM stones tended to more frequent in 2016-18 group than in 2001-03. COD stones were significantly more frequent in 2001-03 than in 2016-18. ST stone frequency was increased from 2001-03 to 2016-18. No increase of uric acid containing stones was observed in 2016-18. Results were confirmed after adjustment by age. Averages annual regional temperatures increased from 14° C to 15.4° C during the two observation periods. Conclusions: No increase of UA stones was observed, probably due to the limited impact of the global warming in our temperate climate.


2020 ◽  
Author(s):  
Alberto Trinchieri ◽  
Alessandro Maletta ◽  
Giovanni Simonelli ◽  
Luca Boeri ◽  
Elisa De Lorenzis ◽  
...  

Abstract Background: An increase of the frequency of uric acid urinary stones compared to calcium-containing ones has been recently described. This study was aimed at assessing the frequency of different types of urinary stones in the population of northern Italy in the period 2016-18 compared to 2001-2003.Methods: Analyses by infrared spectroscopy of 1007 stones endoscopically removed at two institutions in the area of Milan (Northern Italy) were retrospectively considered. Stones were classified as calcium oxalate monohydrate (COM) and dihydrate (COD), mixed uric acid/calcium oxalate (UC); uric acid (UA), struvite (ST); apatite (CAP); mixed calcium oxalate / apatite (CAPOX); others. The patients were divided into two groups: 2001-2003 and 2016-2018. The average temperature values of the region over the two time periods were obtained by the national statistical institute.Results: The average age of the 2001-2003 group (45.8+/-15.4 years) was significantly lower than the average age of the 2016-18 group (57.9+/-14.8) (0.000). M / F ratio was similar in the two groups: 119 / 69 (1:0.58) in 2001-2003 and 527 / 292 (1:0.55) in 2016-18 (p = 0.862). COM stones tended to more frequent in 2016-18 group than in 2001-03. COD stones were significantly more frequent in 2001-03 than in 2016-18. ST stone frequency was increased from 2001-03 to 2016-18. No increase of uric acid containing stones was observed in 2016-18. Results were confirmed after adjustment by age. Averages annual regional temperatures increased from 14° C to 15.4° C during the two observation periods.Conclusions: No increase of UA stones was observed, probably due to the limited impact of the global warming in our temperate climate.


Sign in / Sign up

Export Citation Format

Share Document