scholarly journals Spectrum of pediatric urinary stone composition in North Western India: analysis at tertiary care center

Author(s):  
Rama Kishan Saran ◽  
Pawan Katti ◽  
Kiran Mirdha ◽  
Sanya Saran ◽  
Rajendra Prasad Takhar

Background: Pediatric urolithiasis results in significant morbidity in later life. Incidence as well as site and chemical composition of calculi varies according to the changes in socio-economic conditions over time and the subsequent changes in dietary habits leading to a marked variation in the spectrum of urinary stone composition. To evaluate the spectrum of urinary stone composition in pediatric population from North-western India.Methods: This was a prospective observational study conducted between October 2013 and February 2019 which included pediatric patients with urolithiasis. Demographic and epidemiological characteristics including age, sex, geography, religion, socio-economic status, dietary habits were recorded. The location and sizes of stones were documented. The data was collected, analyzed and presented using summary statistics.Results: A total of 163 patients with urolithiasis were enrolled, of which 86 (53%) aged between 6 and 10 years, 49 (30%) aged between 11 and 14 years and 28 (17%) were aged between 0 and 5 years. The majority of patients were male (n=134; 82.21%). The most common location of the stone was urinary bladder (n=106; 65.03%) followed by kidney (n=33; 20.25%), urethra (n=16; 9.82%) and ureter (n=8; 4.91%). The upper tract (kidney and ureter) to the lower tract (bladder and urethra) stone ratio was 1:4. Stones with mixed composition were more than pure stones (73.62% versus 26.38%). The most common composition was the mixed stone of calcium oxalate, calcium phosphate and uric acid (n=36; 22.09%) followed by mixed stone of calcium oxalate monohydrate and dihydrate with uric acid (n=29; 17.79%), calcium oxalate and uric acid (n=25, 15.34%), calcium oxalate and calcium phosphate (n=20; 12.27%). Calcium oxalate was present in 80% of the stones, followed by uric acid in 7%, struvite in 6%, cystine in 3% and calcium phosphate in 2%.Conclusions: These results suggest that the prevalence of mixed stones with calcium oxalate as the predominant chemical component in the urinary stones of pediatric patients studied.

2021 ◽  
Vol 93 (3) ◽  
pp. 307-312
Author(s):  
Adam Hali´nski ◽  
Kamran Hassan Bhatti ◽  
Luca Boeri ◽  
Jonathan Cloutier ◽  
Kaloyan Davidoff ◽  
...  

Objective: To study urinary stone composition patterns in different populations around the world. Materials and methods: Data were collected by reviewing charts of 1204 adult patients of 10 countries with renal or ureteral stones (> 18 years) in whom a stone analysis was done and available. Any method of stone analysis was accepted, but the methodology had to be registered. Results: In total, we observed 710 (59%) patients with calcium oxalate, 31 (1%) with calcium phosphate, 161 (13%) with mixed calcium oxalate/calcium phosphate, 15 (1%) with carbapatite, 110 (9%) with uric acid, 7 (< 1%) with urate (ammonium or sodium), 100 (9%) with mixed with uric acid/ calcium oxalate, 56 (5%) with struvite and 14 (1%) with cystine stones. Calciumcontaining stones were the most common in all countries ranging from 43 to 91%. Oxalate stones were more common than phosphate or mixed phosphate/oxalate stones in most countries except Egypt and India. The rate of uric acid containing stones ranged from 4 to 34%, being higher in Egypt, India, Pakistan, Iraq, Poland and Bulgaria. Struvite stones occurred in less than 5% in all countries except India (23%) and Pakistan (16%). Cystine stones occurred in 1% of cases. Conclusions: The frequency of different types of urinary stones varies from country to country. Calcium-containing stones are prevalent in all countries. The frequency of uric acid containing stones seems to depend mainly on climatic factors, being higher in countries with desert or tropical climates. Dietary patterns can also lead to an increase in the frequency of uric acid containing stones in association with high obesity rates. Struvite stones are decreasing in most countries due to improved health conditions.


2020 ◽  
Author(s):  
Alberto Trinchieri ◽  
Alessandro Maletta ◽  
Giovanni Simonelli ◽  
Luca Boeri ◽  
Elisa De Lorenzis ◽  
...  

Abstract Introduction: An increase of the frequency of uric acid urinary stones compared to calcium-containing ones has been recently described. This study was aimed at assessing the frequency of different types of urinary stones in the population of northern Italy in the period 2016-18 compared to 2001-2003. Materials and Methods: Analyses by infrared spectroscopy of 1007 stones endoscopically removed at two institutions in the area of Milan (Northern Italy) were retrospectively considered. Stones were classified as calcium oxalate monohydrate (COM) and dihydrate (COD), mixed uric acid/calcium oxalate (UC); uric acid (UA), struvite (ST); apatite (CAP); mixed calcium oxalate / apatite (CAPOX); others. The patients were divided into two groups: 2001-2003 and 2016-2018. The average temperature values of the region over the two time periods were obtained by the national statistical institute. Results: The average age of the 2001-2003 group (45.8+/-15.4 years) was significantly lower than the average age of the 2016-18 group (57.9+/-14.8) (0.000). M / F ratio was similar in the two groups: 119 / 69 (1:0.58) in 2001-2003 MI and 527 / 292 (1:0.55) in 2016-18 (p = 0.862). COM stones tended to more frequent in 2016-18 group than in 2001-03. COD stones were significantly more frequent in 2001-03 than in 2016-18. ST stone frequency was increased from 2001-03 to 2016-18. No increase of uric acid containing stones was observed in 2016-18. Results were confirmed after adjustment by age. Averages annual regional temperatures increased from 14° C to 15.4° C during the two observation periods. Conclusions: No increase of UA stones was observed, probably due to the limited impact of the global warming in our temperate climate.


2020 ◽  
Author(s):  
Alberto Trinchieri ◽  
Alessandro Maletta ◽  
Giovanni Simonelli ◽  
Luca Boeri ◽  
Elisa De Lorenzis ◽  
...  

Abstract Background: An increase of the frequency of uric acid urinary stones compared to calcium-containing ones has been recently described. This study was aimed at assessing the frequency of different types of urinary stones in the population of northern Italy in the period 2016-18 compared to 2001-2003.Methods: Analyses by infrared spectroscopy of 1007 stones endoscopically removed at two institutions in the area of Milan (Northern Italy) were retrospectively considered. Stones were classified as calcium oxalate monohydrate (COM) and dihydrate (COD), mixed uric acid/calcium oxalate (UC); uric acid (UA), struvite (ST); apatite (CAP); mixed calcium oxalate / apatite (CAPOX); others. The patients were divided into two groups: 2001-2003 and 2016-2018. The average temperature values of the region over the two time periods were obtained by the national statistical institute.Results: The average age of the 2001-2003 group (45.8+/-15.4 years) was significantly lower than the average age of the 2016-18 group (57.9+/-14.8) (0.000). M / F ratio was similar in the two groups: 119 / 69 (1:0.58) in 2001-2003 and 527 / 292 (1:0.55) in 2016-18 (p = 0.862). COM stones tended to more frequent in 2016-18 group than in 2001-03. COD stones were significantly more frequent in 2001-03 than in 2016-18. ST stone frequency was increased from 2001-03 to 2016-18. No increase of uric acid containing stones was observed in 2016-18. Results were confirmed after adjustment by age. Averages annual regional temperatures increased from 14° C to 15.4° C during the two observation periods.Conclusions: No increase of UA stones was observed, probably due to the limited impact of the global warming in our temperate climate.


2021 ◽  
Author(s):  
Adam Halinski ◽  
Elenko Popov ◽  
Kamran Hassan Bhattikam ◽  
Luca Boeri ◽  
Jonathan Cloutier ◽  
...  

Abstract To compare urinary stone composition patterns in different populations around the world in relation to the structure of their population, dietary habits, and climate. 1204 adult patients with urolithiasis and stone analysis was included . International websites were searched to obtain data. We observed 710(59%) patients with calcium oxalate, 31(1%) calcium phosphate, 161(13%) mixed calcium oxalate/calcium phosphate, 15(1%) carbapatite, 110(9%) uric acid, 7(<1%) urate, 100(9%) mixed uric acid/ calcium oxalate, 56(5%) struvite and 14(1%) cystine stones. Calcium stones were the most common in all countries (up to 91%) with the highest rates in Canada and China. Oxalate stones were more common than phosphate or mixed phosphate/oxalate stones except Egypt and India. The rate of uric acid stones, being higher in Egypt, India, Pakistan, Iraq, Poland, and Bulgaria. Struvite stones occurred in less than 5% except India (23%) and Pakistan (16%). Cystine stones occurred in 1%. The frequency of different types of urinary stones varies from country to country. Calcium stones are prevalent in all countries. Uric acid stones seems to depend mainly on climatic factors, being higher in countries with desert or tropical climates. Dietary patterns can also lead to an increase it. Struvite stones are decreasing in most countries.


2017 ◽  
Vol 34 (3-4) ◽  
pp. 7-12
Author(s):  
Pedro Valente ◽  
Hélder Castro ◽  
Inês Pereira ◽  
Fernando Vila ◽  
Paulo Araújo ◽  
...  

Objectives: To evaluate urinary stone composition in our institution, its gender and age, including variations and the evolution in the last 7 years. Material and Methods: The authors reviewed all urinary stone analysis performed since January 2009 to September 2015 in our hospital – Centro Hospitalar do Tâmega e Sousa, Penafiel, Portugal. Patients were stratified by gender, age and stone composition analyzing the evolution of stone composition in different years. The stone analysis method was infrared spectroscopy. Results: From 302 valid stone analysis reports, 55,3% were female and 44,7% were male patients. Mean patient age was 51±14 years old. A total of 7 different mineral components were identified. 51,6% (n=156) of all the stones had Calcium Oxalate, 41% (n=124) had Calcium Phosphate (33% of Apatite form), 37,7% (n=114) had Uric Acid, 22,1% (n=67) had Ammonium Urate, 9,6% (n=29) had Magnesium Ammonium Phosphate, 6,3% (n=19) had Sodium Urate, and 1,3% (n=4) had Cystine in its composition. Only 30,4% of stones had a single chemical compound. Of these 56% were pure stones of Calcium Oxalate, and 31% were pure stone of Uric Acid. The most frequent mixed stone was Calcium Oxalate + Calcium Phosphate (Apatite) followed by Uric Acid + Ammonium Urate comprehending 45% and 27% of all mixed stones respectively. Related to the ethology we divided stones into 3 groups, pure non-infection, pure infection, and mixed with component of infection, and the prevalence was 37,7%, 4,3% and 57,9% respectively. The distribution between genders was similar and the highest difference was in the Ammonium Urate compound with 28% prevalence in male and 17% in women. (p=0,379)
Patients after 50 years old had more prevalence of Uric Acid component accounting for 49% of their stones.(p<0,001) . Along the 7 years of study we identified a significant reduction in the prevalence of mixed stones with component of infection, gradually decreasing from 89,6% in 2009 to 27% in 2015. Conclusions: Calcium Oxalate calculus were the most prevalent, but this difference was not as important as in other studies worldwide. This study highlights the importance of the development of National and European database to report all regional stone composition variations.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Alberto Trinchieri ◽  
Alessandro Maletta ◽  
Giovanni Simonelli ◽  
Luca Boeri ◽  
Elisa De Lorenzis ◽  
...  

Abstract Background An increase of the frequency of uric acid urinary stones compared to calcium-containing ones has been recently described. This study was aimed at assessing the frequency of different types of urinary stones in the population of northern Italy in the period 2016–18 compared to 2001–2003. Methods Analyses by infrared spectroscopy of 1007 stones endoscopically removed at two institutions in the area of Milan (Northern Italy) were retrospectively considered. Stones were classified as calcium oxalate monohydrate (COM) and dihydrate (COD), mixed uric acid/calcium oxalate (UC); uric acid (UA), struvite (ST); apatite (CAP); mixed calcium oxalate / apatite (CAPOX); others. The patients were divided into two groups: 2001–2003 and 2016–2018. The average temperature values of the region over the two time periods were obtained by the national statistical institute. Results The average age of the 2001–2003 group (45.8+/− 15.4 years) was significantly lower than the average age of the 2016–18 group (57.9+/− 14.8) (0.000). M / F ratio was similar in the two groups: 119 / 69 (1,0.58) in 2001–2003 and 527 / 292 (1,0.55) in 2016–18 (p = 0.862). COM stones tended to more frequent in 2016–18 group than in 2001–03. COD stones were significantly more frequent in 2001–03 than in 2016–18. ST stone frequency was increased from 2001 to 03 to 2016–18. No increase of uric acid containing stones was observed in 2016–18. Results were confirmed after adjustment by age. Averages annual regional temperatures increased from 14 °C to 15.4 °C during the two observation periods. Conclusions No increase of UA stones was observed, probably due to the limited impact of the global warming in our temperate climate.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Daling Zhang ◽  
Songchao Li ◽  
Zhengguo Zhang ◽  
Ningyang Li ◽  
Xiang Yuan ◽  
...  

AbstractA total of 1520 patients with urinary stones from central China were collected and analysed by Fourier transform infrared spectroscopy between October 1, 2016 and December 31, 2019. For all patients, age, sex, comorbidities, stone location, laboratory examination and geographic region were collected. The most common stone component was calcium oxalate (77.5%), followed by calcium phosphate (8.7%), infection stone (7.6%), uric acid (UA) stone (5.3%)and cystine (0.9%). The males had more calcium oxalate stones (p < 0.001), while infection stone and cystine stones occurred more frequently in females (p < 0.001). The prevalence peak occurred at 41–60 years in both men and women. UA stones occurred frequently in patients with lower urinary pH (p < 0.001), while neutral urine or alkaline urine (p < 0.001) and urinary infection (p < 0.001) were more likely to be associated with infection stone stones. Patients with high levels of serum creatinine were more likely to develop UA stones (p < 0.001). The proportion of UA stones in diabetics was higher (p < 0.001), and the incidence of hypertension was higher in patients with UA stones (p < 0.001). Compared to the other types, more calcium oxalate stones were detected in the kidneys and ureters (p < 0.001), whereas struvite stones were more frequently observed in the lower urinary tract (p = 0.001). There was no significant difference in stone composition across the Qinling-Huaihe line in central China except UA stones, which were more frequently observed in patients south of the line (p < 0.001).


QJM ◽  
2021 ◽  
Vol 114 (Supplement_1) ◽  
Author(s):  
Ahmed Salah Mahmoud Ahmed Shehata ◽  
Mohamed Rafik El-Halaby ◽  
Ahmed Mohamed Saafan

Abstract Objectives to make a reliable correlation between the chemical composition of the urinary calculi and its Hounsfield unit on CT scan, upon which we can depend on it for prediction of the type of the urinary calculi. The prediction of the chemical structure of the stone would help us to reach a more efficient therapeutic and prophylactic plan. Methods A retrospective study was performed by interpretation of the preoperative CT scans for patients who were presented by urinary stones. Identification of the chemical structure of the calculi was implemented using Fourier Transform Infrared Spectroscopy (FT-IR spectroscopy). The laboratory report revealed multiple types of stones either of pure or mixed composition. Afterwards, a comparison was done between Hounsfield units of the stones and the chemical structure. Results The chemical structure of the urinary stones revealed four pure types of stones (Uric acid, Calcium Oxalate, Struvite and Cystine) and two types of mixed stones (mixed calcium oxalate+ Uric, and mixed calcium oxalate+ calcium phosphate). Uric acid stone had a mean Hounsfield Unit (HU) density of428 ± 81, which was quite less than the other stones, followed by struvite stones with density ranging about 714 ± 38. Mixed calcium oxalate stones could be differentiated from other types of stones like uric acid, pure calcium oxalate and struvite stones by the Hounsfield unit of Computed Tomography (the mean Hounsfield Unit was 886 ± 139 and 1427 ± 152 for mixed calcium oxalate + uric stone and mixed calcium oxalate + calcium phosphate stones respectively). Moreover, pure calcium oxalate stones were easily differentiated from all other stones using the mean Hounsfield density as it was 1158 ± 83. It was challenging only when it was compared to cystine stones, as they were quiet similar to HU value (997 ± 14). The variation of Hounsfield values among the previously mentioned stones, was statistically significant (p &lt; 0.001). Conclusion The study proved that the Hounsfield Unit of CT scanning is a convenient measure to predict the chemical structure of urinary calculi.


2021 ◽  
Vol 10 (4) ◽  
pp. 88-93
Author(s):  
Vepy Asyana ◽  
Leni Aziyus Fitri ◽  
Freddy Haryanto ◽  
Taufik Ridwan ◽  
Nanda Fitri Ayu Muningrat

Abstrak. Batu kemih merupakan salah satu penyakit dengan tingkat prevalensi yang cukup tinggi di Indonesia. Pengetahuan komposisi pada kandungan batu kemih dapat membantu tenaga medis dalam melakukan justifikasi penanganan tindakan lanjut pada pasien dengan tepat.Tujuan penelitian iniadalah menentukan kandungan mineral yang terdapat pada batu kemih menggunakan metode analisa spektrum inframerah dan nilai hounsfield unit (HU) yang terdapat pada citra yang dihasilkan dari modality mCT-Scan. Hasil karakterisasi fourier transform infrared spectroscopy (FTIR) memperlihatkan kandungan mineral batu kemih terdiri dari batu kemih calcium oxlate monohydrate, uric acid, batu campuran calcium oxalate dengan phosphate dan batu campuran cystine dengan phosphate sedangkan hasil dari scanning mCT memperlihatkan adanya kandungan mineral batu kemih campuran seperti batu campuran calcium oxalate dan cystine, batu campuran calcium oxalate, struvite, dan cystine, dan batu campuran calciumoxalate dan uric acid.Dari hasil penelitian ini dapat disimpulkan bahwa kedua modaliti tersebut mampu memperlihatkan kandungan mineral batu kemih dengan baik. Hal ini terlihat adanya spektrum serapan karakteristik dari FTIR setiap sampel berbeda-beda dan dari hasil citra mCT-Scan memperlihatkan nilai HU yang bervariasi sehingga mengindikasikan kandungan mineral pada sampel batu kemih yang diamati juga memiliki jenis yang berbeda-beda. Abstract. Urinary stones are a disease with a high prevalence rate in Indonesia. Knowledge of the composition of the urinary stone is an essential part to determine suitable treatments for patients. The aim of this research is to determine the mineral contained in urinary stones using the infrared spectrum and the value of HU (hounsfield unit) from the image mCT-Scan. The results of FTIR characterization showed that the mineral content of urinary stones consisted of calcium oxlate monohydrate, uric acid, calcium oxalate and phosphate mixed stones and cystine-phosphate mixed stones. mCT-Scan results showed the mineral content of urinary stones such as calcium oxalate and cystine mixed stone, calcium oxalate, struvite, and cystine mixed stones, and calcium oxalate and uric acid mixed stones. This show that the two modalities are be able to determine the mineral content of urinary stones. It can be seen that the characteristic absorption spectrum of the FTIR for each sample is different and from the mCT-Scan image results, the HU value varies so that it indicates the mineral content of the observed urine stone sample are different.


2020 ◽  
Vol 5 (6) ◽  
pp. 124-128
Author(s):  
S. M. Kolupayev ◽  
◽  
E. P. Bereznyak ◽  

The paper presents the results of studying the features of the mineral composition of urinary stones obtained after spontaneous passage, as well as the use of minimally invasive surgical techniques. Material and methods. The study involved 61 patient with urolithiasis, depending who were examined depending on the sex and age of the patients. Infrared spectroscopy in the spectral range of 4000-400 cm-1 was used as a method for assessing the mineral composition of the stone. The next stage of the study consisted of analyzing the occurrence of stones of various mineral types in groups of patients with different gender and age characteristics. Results and discussion. Infrared spectroscopy identified a wide range of chemical compounds in urinary stones, in which calcium oxalate in the form of monohydrate (vevelite) or dihydrate (vedelite), calcium phosphate in the form of hydroxylapatite and uric acid were most often identified. Calcium carbonate, aragonite, struvite, ammonium urate, and cystine were detected in single samples. 45 patients (73.77%) had a mixed composition of the stone, consisting of two or more mineral components. Depending on the prevailing component, which is more than 50% vol. the sample, urinary stones were classified into 3 mineral types: type 1 – calcium oxalate calculi, the prevailing component of which is calcium oxalate in the form of monohydrate (vevellite) or dihydrate (veddelite); Type 2 – calcium phosphate, in which more than 50% vol. represented by apatite, hydroxylapatite or fluorapatite; Type 3 – stones, the dominant substance of which is uric acid or uric acid dihydrate. Most of the urinary stone samples were represented by type 1 stones, which were significantly more often detected in males. The study of gender dependence in the prevalence of stones of types 2 and 3, corresponding to these minerals, was not identified. Type 1 urinary stones were observed in all age categories, with a predominance in patients aged 30-39 years (41.38%). The age distribution of stones of type 2 had similar characteristics, while the maximum number of patients with this type of stone was noted in the age range of 40-49 years (40%), followed by a decrease in this indicator in older age groups. The minimum number of cases of type 3 stone formation was registered among patients aged 30-39 years (8.33%). In the following age periods, the quantitative presence of this type of stones increased with a maximum value in the age range of 50-59 years (41.67%). Conclusion. The mineral composition of urinary stones has features, depending on the sex and age of patients. The formation of oxalate-calcium urinary stones is most characteristic of men, the peak incidence occurs at the age of 40-49 years. Gender features of the distribution of stones, the dominant components of which are calcium phosphate and uric acid were not detected. The frequency of detection of uric acid stones increases with age, the inverse relationship is characteristic of the age distribution of phosphate-calcium stones


Sign in / Sign up

Export Citation Format

Share Document