A Comparison of the Effects of Intravenous Infusion of Individual Branched-Chain Amino Acids on Blood Amino Acid Levels in Man

1981 ◽  
Vol 60 (1) ◽  
pp. 95-100 ◽  
Author(s):  
S. Eriksson ◽  
L. Hagenfeldt ◽  
J. Wahren

1., Intravenous infusions of l-valine (600 μmol/min), l-isoleucine (150 μmol/min), l-leucine (300 μmol/min) and a mixture of the three branched-chain amino acids (70% l-leucine, 20% l-valine, 10% l-isoleucine; 270 μmol/min) were given to four groups of healthy volunteer subjects. Whole-blood concentrations of amino acids and glucose and serum insulin were measured before and during the infusions. 2. Valine and isoleucine infusions resulted in twelve- and six-fold increases in the respective amino acid. During valine infusion, tyrosine was the only amino acid for which a decrease in concentration was seen (25%, P < 0.05). With isoleucine administration, no significant changes were found. In contrast, leucine infusion (during which the leucine concentration rose about sixfold) was accompanied by significant decreases in tyrosine (35%), phenylalanine (35%), methionine (50%), valine (40%) and isoleucine (55%). The arterial glucose concentration fell slightly (5%) and the insulin concentration increased 20% during leucine infusion. 3. Infusion of the mixture of the three branched-chain amino acids resulted in marked decreases in tyrosine (50%), phenylalanine (50%) and methionine (35%). The decreased amino acid levels remained low for 2 h after the end of the infusion. 4. The present findings demonstrate that intravenous infusion of leucine (not infusion of valine or isoleucine) results in marked reductions in the concentrations of the aromatic amino acids and methionine. Infusion of a mixture of the three branched-chain amino acids gives results similar to those obtained with leucine infusion alone. Thus a mixed branched-chain amino acid solution with leucine as its main constituent seems to be the best alternative in the treatment of patients with hepatic cirrhosis and encephalopathy.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Karin Shimada ◽  
Isao Matsui ◽  
Kazunori Inoue ◽  
Ayumi Matsumoto ◽  
Seiichi Yasuda ◽  
...  

Abstract Dietary phosphate intake is closely correlated with protein intake. However, the effects of the latter on phosphate-induced organ injuries remain uncertain. Herein, we investigated the effects of low (10.8%), moderate (23.0%), and high (35.2%) dietary casein and egg albumin administration on phosphate-induced organ injuries in rats. The moderate and high casein levels suppressed renal tubulointerstitial fibrosis and maintained mitochondrial integrity in the kidney. The serum creatinine levels were suppressed only in the high casein group. Phosphate-induced muscle weakness was also ameliorated by high dietary casein. The urinary and fecal phosphate levels in the early experiment stage showed that dietary casein did not affect phosphate absorption from the intestine. High dietary egg albumin showed similar kidney protective effects, while the egg albumin effects on muscle weakness were only marginally significant. As the plasma branched-chain amino acid levels were elevated in casein- and egg albumin-fed rats, we analyzed their effects. Dietary supplementation of 10% branched-chain amino acids suppressed phosphate-induced kidney injury and muscle weakness. Although dietary protein restriction is recommended in cases of chronic kidney disease, our findings indicate that the dietary casein, egg albumin, and branched-chain amino acid effects might be reconsidered in the era of a phosphate-enriched diet.


2010 ◽  
Vol 76 (5) ◽  
pp. 1507-1515 ◽  
Author(s):  
Motoyuki Shimizu ◽  
Tatsuya Fujii ◽  
Shunsuke Masuo ◽  
Naoki Takaya

ABSTRACT Although branched-chain amino acids are synthesized as building blocks of proteins, we found that the fungus Aspergillus nidulans excretes them into the culture medium under hypoxia. The transcription of predicted genes for synthesizing branched-chain amino acids was upregulated by hypoxia. A knockout strain of the gene encoding the large subunit of acetohydroxy acid synthase (AHAS), which catalyzes the initial reaction of the synthesis, required branched-chain amino acids for growth and excreted very little of them. Pyruvate, a substrate for AHAS, increased the amount of hypoxic excretion in the wild-type strain. These results indicated that the fungus responds to hypoxia by synthesizing branched-chain amino acids via a de novo mechanism. We also found that the small subunit of AHAS regulated hypoxic branched-chain amino acid production as well as cellular AHAS activity. The AHAS knockout resulted in higher ratios of NADH/NAD+ and NADPH/NADP+ under hypoxia, indicating that the branched-chain amino acid synthesis contributed to NAD+ and NADP+ regeneration. The production of branched-chain amino acids and the hypoxic induction of involved genes were partly repressed in the presence of glucose, where cells produced ethanol and lactate and increased levels of lactate dehydrogenase activity. These indicated that hypoxic branched-chain amino acid synthesis is a unique alternative mechanism that functions in the absence of glucose-to-ethanol/lactate fermentation and oxygen respiration.


1990 ◽  
Vol 79 (5) ◽  
pp. 457-466 ◽  
Author(s):  
Rita J. Louard ◽  
Eugene J. Barrett ◽  
Robert A. Gelfand

1. Using the forearm balance method, together with systemic infusions of l-[ring-2,6-3H]phenylalanine and l-[1-14C]leucine, we examined the effects of infused branched-chain amino acids on whole-body and skeletal muscle amino acid kinetics in 10 postabsorptive normal subjects; 10 control subjects received only saline. 2. Infusion of branched-chain amino acids caused a four-fold rise in arterial branched-chain amino acid levels and a two-fold rise in branched-chain keto acids; significant declines were observed in circulating levels of most other amino acids, including phenylalanine, which fell by 34%. Plasma insulin levels were unchanged from basal levels (8 ± 1 μ-units/ml). 3. Whole-body phenylalanine flux, an index of proteolysis, was significantly suppressed by branched-chain amino acid infusion (P < 0.002), and forearm phenylalanine production was also inhibited (P < 0.03). With branched-chain amino acid infusion total leucine flux rose, with marked increments in both oxidative and non-oxidative leucine disposal (P < 0.001). Proteolysis, as measured by endogenous leucine production, showed a modest 12% decrease, although this was not significant when compared with saline controls. The net forearm balance of leucine and other branched-chain amino acids changed from a basal net output to a marked net uptake (P < 0.001) during branched-chain amino acid infusion, with significant stimulation of local leucine disposal. Despite the rise in whole-body non-oxidative leucine disposal, and in forearm leucine uptake and disposal, forearm phenylalanine disposal, an index of muscle protein synthesis, was not stimulated by infusion of branched-chain amino acids. 4. The results suggest that in normal man branched-chain amino acid infusion suppresses skeletal muscle proteolysis independently of any rise of plasma insulin. Muscle branched-chain amino acid uptake rose dramatically in the absence of any apparent increase in muscle protein synthesis, as measured by phenylalanine disposal, or in branched-chain keto acid release. Thus, an increase in muscle branched-chain amino acid concentrations and/ or local branched-chain amino acid oxidation must account for the increased disposal of branched-chain amino acids.


1987 ◽  
Vol 73 (5) ◽  
pp. 471-478 ◽  
Author(s):  
T. H. J. Goodship ◽  
S. Lloyd ◽  
P. W. McKenzie ◽  
M. Earnshaw ◽  
I. Smeaton ◽  
...  

1. A 1% amino acid dialysis solution with a high concentration of the branched-chain amino acids has been compared with 1.36% glucose in short-term studies. 2. The 1% amino acid solution was as effective an agent as 1.36% glucose with respect to ultrafiltration and clearance of creatinine, urea and potassium. 3. Levels of branched-chain amino acids rose to the upper end of the normal range within 1 h and remained at this level over the entire period of the study. Total and non-essential amino acids had returned to baseline by the end of the cycle. 4. Blood glucose rose to significantly greater levels during the 1.36% glucose exchange than during the 1% amino acid exchange. There was an increase in serum insulin levels during both cycles; this was significantly greater with the 1% amino acid solution than the 1.36% glucose. 5. There was no evidence of short-term metabolic complications with the 1% amino acid solution.


1987 ◽  
Vol 67 (4) ◽  
pp. 1011-1020 ◽  
Author(s):  
RICHARD J. EARLY ◽  
JAMES R. THOMPSON ◽  
ROBERT J. CHRISTOPHERSON ◽  
GARY W. SEDGWICK

In the first of two experiments, whole blood branched-chain amino acid (BCAA) and plasma branched-chain α-keto acid (BCKA) concentrations in jugular venous blood were determined in cattle and sheep before and during a 6-d fast. In cattle, concentrations of valine, isoleucine, α-ketoisovalerate (KIV) and α-ketomethylvalerate (KMV) remained unchanged whereas leucine and α-ketoisocaproate (KTC) increased (P < 0.05) during fasting. In sheep, only KIV and KMV remained unchanged whereas BCAA and KIC increased (P < 0.05) during fasting. In a second experiment on cattle chronically catheterized to measure BCAA and BCKA exchange across the portal-drained viscera (PDV) and hindlimb (HL), the PDV added and the HL removed BCAA from the blood of fed cattle. The opposite exchange occurred after a 6-d fast. Releases of BCKA from the PDV and HL in both fed and fasted states were small compared to BCAA exchanges. The data suggest that blood BCAA but not BCKA concentrations may respond differently to starvation in sheep versus cattle and that in cattle the PDV and HL do not release appreciable amounts of BCKA relative to the net movements of the BCAA. Key words: Portal-drained viscera, hind limb, branched-chain amino acids, branched-chain α-keto acids, fasting, ruminants


1978 ◽  
Vol 24 (10) ◽  
pp. 1158-1163
Author(s):  
Gérald Proteau ◽  
Marvin Silver

The heterotrophic growth of Thiobacillus acidophilus was inhibited by branched-chain amino acids; valine, isoleucine, and leucine. The inhibition by valine and leucine were partially reversed by isoleucine, and the inhibition by isoleucine was partially reversed by valine. Inhibitions by methionine or threonine were partially reversed when both amino acids were present in the growth medium. Inhibition by tyrosine was increased by phenylalanine or tryptophan. Cystine completely inhibited growth. Other amino acids tested produced little or no inhibition.Acetohydroxy acid synthetase (AHAS) activity was demonstrated in crude extracts of T. acidophilus. In crude extracts the optimum pH was 8.5 with a shift to 9.0 in the presence of valine. Valine was the only branched-chain amino acid which inhibited the AHAS activity. The presence of only one peak of AHAS activity upon centrifugation in linear glycerol density gradients demonstrated that the AHAS activity sediments as one component.


1969 ◽  
Vol 47 (9) ◽  
pp. 883-888 ◽  
Author(s):  
J. A. Lowden ◽  
M. A. LaRamée

The subcutaneous administration of phenylalanine to adult or 20-day-old rats produces a 20- to 25-fold rise in cerebral phenylalanine with only a two- to five-fold rise in tyrosine.The branched-chain amino acids decrease in the brains of these animals but levels of nonessential amino acids are unchanged.In 10-day-old rats subcutaneous phenylalanine administration produces a greater increase in cerebral phenylalanine and tyrosine and has less effect on the branched-chain amino acids, but causes marked decreases in nonessential amino acids. The findings suggest that the permanent defect in myelin formation produced by hyperphenylalaninemia in the newborn rat may be related to altered intermediary metabolism resulting from the fall in nonessential amino acids.


2000 ◽  
Vol 23 (6) ◽  
pp. 375-388 ◽  
Author(s):  
J. Steczko ◽  
K.C. Bax ◽  
S.R. Ash

Changes in plasma amino acid concentrations were measured in patients with hepatic failure during extracorporeal hemodiabsorption (using the Liver Dialysis Unit, “the Unit”) or hemodiabsorption plus sorbent-based pheresis treatment (using the Liver Dialysis Plasmafilter Unit, “the PF-Unit”) Systems. Eight patients with hepatic failure, grade 3 or 4 encephalopathy, elevated bilirubin and/or creatinine levels and respiratory or renal failure were treated for 1–3 days with the Unit alone. Three of these were also treated with the Unit containing 10 g of BCAA in the sorbent suspension. Four patients with hepatic failure treated with the PF Unit also had 10 g of branched chain amino acid (BCAA) added to the sorbents of the Unit portion of this device. Pre- and post-plasma samples were drawn and high performance liquid chromatography (HPLC) was used to separate and detect amino acids in the plasma. Both the Unit and the PF-Unit have the capability to selectively remove various amino acids, especially aromatic amino acids (AAA). The pre-treatment amino acid profiles of plasma were typical for hepatic failure, with abnormally high levels of phenylalanine, tyrosine, tryptophan, and methionine and decreased levels of valine, leucine and isolucine. The average pre-treatment Fischer ratio (BCAA/AAA) for both Unit and PF-Unit patients was 1.43 (±0.58). Treatments by both systems resulted in an increase of BCAA levels in blood and concomitant decrease of AAA levels, with an average Fischer ratio improvement of 30–38% for the Unit and PF-Unit without BCAA. The Fischer ratio improved by 90% (average) for the Unit with BCAA. Levels of many other amino acids (such as alanine, glycine, proline or lysine) increased during both Unit and PF-Unit treatments. The removal of strongly protein-bound toxin and amino acids such as tryptophan and sulphydryl amino acids was more effective by the PF-Unit. Both the Unit and the PF-Unit have the unique capability to remove toxic aromatic amino acids while increasing BCAA levels in patient. The increase in many amino acid levels may be related to the removal of toxins that interfere with normal amino acid metabolism. The addition of the PF module improves the removal of bilirubin and similarly protein-bound chemicals. Changes in amino acid profiles by the Unit and the PF-Unit contrast markedly with other extracorporeal devices.


Sign in / Sign up

Export Citation Format

Share Document