Carnitine acyltransferases and acyl-CoA hydrolases in human and rat liver

1987 ◽  
Vol 73 (1) ◽  
pp. 3-10 ◽  
Author(s):  
L. Agius ◽  
P. D. Wright ◽  
K. G. M. M. Alberti

1. The activities of carnitine acyltransferases and acyl-CoA hydrolases were determined in human and rat liver to establish the validity of extrapolating from studies on rats to human metabolism. 2. In human liver, carnitine acetyltransferase activity was 10–14 times higher and carnitine octanoyltransferase 1.7–2.4 times higher than in rat liver, while carnitine palmitoyltransferase activity was similar in human and rat. 3. Acetyl-CoA hydrolase and octanoyl-CoA hydrolase activities were lower in human (42–57%) than in rat liver, but palmitoyl-CoA hydrolase activity was similar in both species. 4. The activity of citrate synthase was lower (44%) in human than in rat liver. The low citrate synthase activity and the high carnitine acetyltransferase in human liver suggest that in man acetylcarnitine might be more important as a vehicle for export of acetyl units from mitochondria than citrate. 5. The high activity of carnitine acetyltransferase in human liver is consistent with the observation that acetylcarnitine is the predominant acylcarnitine excreted in diabetic ketosis in man. 6. It is concluded that the rat may not be a valid model for carnitine metabolism in man, and that in human liver carnitine may have an important role in transfer of acetyl groups out of mitochondria and possibly also to extrahepatic tissues.

1970 ◽  
Vol 119 (1) ◽  
pp. 59-65 ◽  
Author(s):  
A. M. Snoswell ◽  
G. D. Henderson

1. Carnitine acetyltransferase (EC 2.3.1.7) activity in sheep liver mitochondria was 76nmol/min per mg of protein, in contrast with 1.7 for rat liver mitochondria. The activity in bovine liver mitochondria was comparable with that of sheep liver mitochondria. Carnitine palmitoyltransferase activity was the same in both sheep and rat liver mitochondria. 2. The [free carnitine]/[acetylcarnitine] ratio in sheep liver ranged from 6:1 for animals fed ad libitum on lucerne to approx. 1:1 for animals grazed on open pastures. This change in ratio appeared to reflect the ratio of propionic acid to acetic acid produced in the rumen of the sheep under the two dietary conditions. 3. In sheep starved for 7 days the [free carnitine]/[acetylcarnitine] ratio in the liver was 0.46:1. The increase in acetylcarnitine on starvation was not at the expense of free carnitine, as the amounts of free carnitine and total acid-soluble carnitine rose approximately fivefold on starvation. An even more dramatic increase in total acid-soluble carnitine of the liver was seen in an alloxan-diabetic sheep. 4. The [free CoA]/[acetyl-CoA] ratio in the liver ranged from 1:1 in the sheep fed on lucerne to 0.34:1 for animals starved for 7 days. 5. The importance of carnitine acetyltransferase in sheep liver and its role in relieving `acetyl pressure' on the CoA system is discussed.


1975 ◽  
Vol 152 (2) ◽  
pp. 167-172 ◽  
Author(s):  
N. D. Costa ◽  
A. M. Snoswell

1. The nature of the acetyl-CoA hydrolase (EC 3.1.2.1) reaction in rat and sheep liver homogenates was investigated. 2. The activity determined in an incubated system was 5.10 and 3.28nmol/min per mg of protein for rat and sheep liver homogenate respectively. This activity was not affected by the addition of l-carnitine, but was decreased by the addition of d-carnitine. 3. No acetyl-CoA hydrolase activity could be detected in rat or sheep liver homogenates first treated with Sephadex G-25. This treatment decreased the carnitine concentrations of the homogenates to about one-twentieth. Subsequent addition of l-carnitine, but not d-carnitine, restored the apparent acetyl-CoA hydrolase activity. 4. Sephadex treatment did not affect acetyl-carnitine hydrolase activity of the homogenates, which was 5.8 and 8.1nmol/min per mg of protein respectively for rat and sheep liver. 5. Direct spectrophotometric assay of acetyl-CoA hydrolase, based on the reaction of CoA released with 5,5′-dithiobis-(2-nitrobenzoic acid), clearly demonstrated that after Sephadex treatment no activity could be measured. 6. Carnitine acetyltransferase (EC 2.3.1.7) activity measured in the same assay system in response to added l-carnitine was very low in normal rat liver homogenates, owing to the apparent high acetyl-CoA hydrolase activity, but was increased markedly after Sephadex treatment. The Vmax. for this enzyme in rat liver homogenates was increased from 3.4 to 14.8nmol/min per mg of protein whereas the Km for l-carnitine was decreased from 936 to 32μm after Sephadex treatment. 7. Acetyl-CoA hydrolase activity could be demonstrated in disrupted rat liver mitochondria but not in separated outer or inner mitochondrial membrane fractions. Activity could be demonstrated after recombination of outer and inner mitochondrial membrane fractions. The outer mitochondrial membrane fraction showed acetylcarnitine hydrolase activity and the inner mitochondrial membrane fraction showed carnitine acetyltransferase activity. 8. The results presented here demonstrate that acetyl-CoA hydrolase activity in rat and sheep liver is an artifact and the activity is due to the combined activity of carnitine acetyltransferase and acetylcarnitine hydrolase.


2006 ◽  
Vol 44 (01) ◽  
Author(s):  
T Mansuroglu ◽  
J Dudas ◽  
B Saile ◽  
D Batusic ◽  
G Ramadori

1981 ◽  
Vol 194 (1) ◽  
pp. 249-255 ◽  
Author(s):  
B Mittal ◽  
C K R Kurup

Administration of the anti-hypercholesterolaemic drug clofibrate to the rat increases the activity of carnitine acetyltransferase (acetyl-CoA-carnitine O-acetyltransferase, EC 2.3.1.7) in liver and kidney. The drug-mediated increase in enzyme activity in hepatic mitochondria shows a time lag during which the activity increases in the microsomal and peroxisomal fractions. The enzyme induced in the particulate fractions is identical with one normally present in mitochondria. The increase in enzyme activity is prevented by inhibitors of RNA and general protein synthesis. Mitochondrial protein-synthetic machinery does not appear to be involved in the process. Immunoprecipitation shows increased concentration of the enzyme protein in hepatic mitochondria isolated from drug-treated animals. In these animals, the rate of synthesis of the enzyme is increased 7-fold.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 355 ◽  
Author(s):  
Deok-Kyu Hwang ◽  
Ju-Hyun Kim ◽  
Yongho Shin ◽  
Won-Gu Choi ◽  
Sunjoo Kim ◽  
...  

Catalposide, an active component of Veronica species such as Catalpa ovata and Pseudolysimachion lingifolium, exhibits anti-inflammatory, antinociceptic, anti-oxidant, hepatoprotective, and cytostatic activities. We characterized the in vitro metabolic pathways of catalposide to predict its pharmacokinetics. Catalposide was metabolized to catalposide sulfate (M1), 4-hydroxybenzoic acid (M2), 4-hydroxybenzoic acid glucuronide (M3), and catalposide glucuronide (M4) by human hepatocytes, liver S9 fractions, and intestinal microsomes. M1 formation from catalposide was catalyzed by sulfotransferases (SULTs) 1C4, SULT1A1*1, SULT1A1*2, and SULT1E1. Catalposide glucuronidation to M4 was catalyzed by gastrointestine-specific UDP-glucuronosyltransferases (UGTs) 1A8 and UGT1A10; M4 was not detected after incubation of catalposide with human liver preparations. Hydrolysis of catalposide to M2 was catalyzed by carboxylesterases (CESs) 1 and 2, and M2 was further metabolized to M3 by UGT1A6 and UGT1A9 enzymes. Catalposide was also metabolized in extrahepatic tissues; genetic polymorphisms of the carboxylesterase (CES), UDP-glucuronosyltransferase (UGT), and sulfotransferase (SULT) enzymes responsible for catalposide metabolism may cause inter-individual variability in terms of catalposide pharmacokinetics.


2018 ◽  
Vol 152 ◽  
pp. 236-243 ◽  
Author(s):  
Stephan C. Jahn ◽  
Marci G. Smeltz ◽  
Zhiwei Hu ◽  
Laura Rowland-Faux ◽  
Guo Zhong ◽  
...  

1963 ◽  
Vol 204 (4) ◽  
pp. 699-704 ◽  
Author(s):  
Glenn E. Mortimore

Direct inhibitory effects of insulin on the release of glucose and urea from isolated livers of fasted and nonfasted rats have been established by use of an improved cyclic perfusion technique in situ. In livers of fasted animals the accumulation of perfusate glucose was small and, in the virtual absence of measurable glycogen, was presumed to be derived largely from protein. Insulin added to the perfusate caused an immediate partial inhibition of both glucose and urea release in amounts suggesting reduced gluconeogenesis. In livers of normal nonfasted rats, on the other hand, the output of glucose was far greater. Although insulin suppressed urea production as in the fasted rat liver, its inhibitory effect on glucose accumulation was severalfold larger. These facts pointed to the existence of a second, and quantitatively more important, action of insulin on hepatic glucose metabolism. With respect to its rapidity of onset, magnitude, and sensitivity to insulin this action compared favorably with glucose responses to insulin in isolated extrahepatic tissues.


1993 ◽  
Vol 294 (2) ◽  
pp. 551-556 ◽  
Author(s):  
A Vandercammen ◽  
E Van Schaftingen

Rat liver is known to contain a regulatory protein that inhibits glucokinase (hexokinase IV or D) competitively versus glucose. This inhibition is greatly reinforced by the presence of fructose 6-phosphate and antagonized by fructose 1-phosphate and by KCl. This protein was now measured in various rat tissues and in the livers of various species by the inhibition it exerts on rat liver glucokinase. Rat, mouse, rabbit, guinea-pig and pig liver, all of which contain glucokinase, also contained between 60 and 200 units/g of tissue of a regulatory protein displaying the properties mentioned above. By contrast, this protein could not be detected in cat, goat, chicken or trout liver, or in rat brain, heart, skeletal muscle, kidney and spleen, all tissues from which glucokinase is missing. Fructose 1-phosphate stimulated glucokinase in extracts of human liver, indicating the presence of regulatory protein. In addition, antibodies raised against rat regulatory protein allowed the detection of an approximately 60 kDa polypeptide in rat, guinea pig, rabbit and human liver. The livers of the toad Bufo marinus, of Xenopus laevis and of the turtle Pseudemys scripta elegans contained a regulatory protein similar to that of the rat, with, however, the major difference that it was not sensitive to fructose 6-phosphate or fructose 1-phosphate. In rat liver, the regulatory protein was detectable 4 days before birth. Its concentration increased afterwards to reach the adult level at day 30 of extrauterine life, whereas glucokinase only appeared after day 15. In the liver of the adult rat, starvation and streptozotocin-diabetes caused a 50-60% decrease in the concentration of regulatory protein after 7 days, whereas glucokinase activity fell to about 20% of its initial level. When 4-day-starved rats were refed, or when diabetic rats were treated with insulin, the concentration of regulatory protein slowly increased to reach about 85% of the control level after 3 days, whereas the glucokinase activity was normalized after the same delay. The fact that there appears to be no situation in which glucokinase is expressed without regulatory protein is in agreement with the notion that the regulatory protein forms a functional entity with this enzyme.


Sign in / Sign up

Export Citation Format

Share Document