Skeletal muscle and whole-body protein turnover in cirrhosis

1990 ◽  
Vol 78 (6) ◽  
pp. 613-619 ◽  
Author(s):  
W. L. Morrison ◽  
I. A. D. Bouchier ◽  
J. N. A. Gibson ◽  
M. J. Rennie

1. We investigated arteriovenous exchanges of tyrosine and 3-methylhistidine across leg tissue in the postabsorptive state as specific indices of net protein balance and myofibrillar protein breakdown, respectively, in eight patients with cirrhosis and in 11 healthy control subjects. Whole-body protein turnover was also measured using l-[1-13C]leucine. 2. Leg efflux of tyrosine was 45% greater in cirrhotic patients than in normal control subjects [−6.5(1.4 to −19.1) vs −4.2 (−2.2 to −7.7) μmol min−1 100 mg−1 of leg, median (range), P <0.025]. 3-Methylhistidine efflux was not significantly altered. 3. In cirrhosis, whole-body leucine flux was normal but whole-body leucine oxidation was elevated so that whole-body protein synthesis was depressed by 17%. 4. The results indicate the predominant mechanism of muscle wasting in cirrhosis to be a fall in muscle protein synthesis, which is accompanied by an overall fall in whole-body protein turnover.

1988 ◽  
Vol 75 (4) ◽  
pp. 415-420 ◽  
Author(s):  
W. L. Morrison ◽  
J. N. A. Gibson ◽  
C. Scrimgeour ◽  
M. J. Rennie

1. We have investigated arteriovenous exchanges of tyrosine and 3-methylhistidine across leg tissue in the postabsorptive state as specific indicators of net protein balance and myofibrillar protein breakdown, respectively, in eight patients with emphysema and in 11 healthy controls. Whole-body protein turnover was measured using l-[1-13C]leucine. 2. Leg efflux of tyrosine was increased by 47% in emphysematous patients compared with normal control subjects, but 3-methylhistidine efflux was not significantly altered. 3. In emphysema, whole-body leucine flux was normal, whole-body leucine oxidation was increased, and whole-body protein synthesis was depressed. 4. These results indicate that the predominant mechanism of muscle wasting in emphysema is a fall in muscle protein synthesis, which is accompanied by an overall fall in whole-body protein turnover.


Nutrients ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2457 ◽  
Author(s):  
Jess A. Gwin ◽  
David D. Church ◽  
Robert R. Wolfe ◽  
Arny A. Ferrando ◽  
Stefan M. Pasiakos

Protein intake recommendations to optimally stimulate muscle protein synthesis (MPS) are derived from dose-response studies examining the stimulatory effects of isolated intact proteins (e.g., whey, egg) on MPS in healthy individuals during energy balance. Those recommendations may not be adequate during periods of physiological stress, specifically the catabolic stress induced by energy deficit. Providing supplemental intact protein (20–25 g whey protein, 0.25–0.3 g protein/kg per meal) during strenuous military operations that elicit severe energy deficit does not stimulate MPS-associated anabolic signaling or attenuate lean mass loss. This occurs likely because a greater proportion of the dietary amino acids consumed are targeted for energy-yielding pathways, whole-body protein synthesis, and other whole-body essential amino acid (EAA)-requiring processes than the proportion targeted for MPS. Protein feeding formats that provide sufficient energy to offset whole-body energy and protein-requiring demands during energy deficit and leverage EAA content, digestion, and absorption kinetics may optimize MPS under these conditions. Understanding the effects of protein feeding format-driven alterations in EAA availability and subsequent changes in MPS and whole-body protein turnover is required to design feeding strategies that mitigate the catabolic effects of energy deficit. In this manuscript, we review the effects, advantages, disadvantages, and knowledge gaps pertaining to supplemental free-form EAA, intact protein, and protein-containing mixed meal ingestion on MPS. We discuss the fundamental role of whole-body protein balance and highlight the importance of comprehensively assessing whole-body and muscle protein kinetics when evaluating the anabolic potential of varying protein feeding formats during energy deficit.


2010 ◽  
Vol 109 (2) ◽  
pp. 431-438 ◽  
Author(s):  
Krista R. Howarth ◽  
Stuart M. Phillips ◽  
Maureen J. MacDonald ◽  
Douglas Richards ◽  
Natalie A. Moreau ◽  
...  

We examined the effect of carbohydrate (CHO) availability on whole body and skeletal muscle protein utilization at rest, during exercise, and during recovery in humans. Six men cycled at ∼75% peak O2 uptake (V̇o2peak) to exhaustion to reduce body CHO stores and then consumed either a high-CHO (H-CHO; 71 ± 3% CHO) or low-CHO (L-CHO; 11 ± 1% CHO) diet for 2 days before the trial in random order. After each dietary intervention, subjects received a primed constant infusion of [1-13C]leucine and l-[ring-2H5]phenylalanine for measurements of the whole body net protein balance and skeletal muscle protein turnover. Muscle, breath, and arterial and venous blood samples were obtained at rest, during 2 h of two-legged kicking exercise at ∼45% of kicking V̇o2peak, and during 1 h of recovery. Biopsy samples confirmed that the muscle glycogen concentration was lower in the L-CHO group versus the H-CHO group at rest, after exercise, and after recovery. The net leg protein balance was decreased in the L-CHO group compared with at rest and compared with the H-CHO condition, which was primarily due to an increase in protein degradation (area under the curve of the phenylalanine rate of appearance: 1,331 ± 162 μmol in the L-CHO group vs. 786 ± 51 μmol in the H-CHO group, P < 0.05) but also due to a decrease in protein synthesis late in exercise. There were no changes during exercise in the rate of appearance compared with rest in the H-CHO group. Whole body leucine oxidation increased above rest in the L-CHO group only and was higher than in the H-CHO group. The whole body net protein balance was reduced in the L-CHO group, largely due to a decrease in whole body protein synthesis. These data extend previous findings by others and demonstrate, using contemporary stable isotope methodology, that CHO availability influences the rates of skeletal muscle and whole body protein synthesis, degradation, and net balance during prolonged exercise in humans.


2006 ◽  
Vol 31 (5) ◽  
pp. 518-529 ◽  
Author(s):  
Sarah B. Wilkinson ◽  
Paul L. Kim ◽  
David Armstrong ◽  
Stuart M. Phillips

We examined the effect of a post-exercise oral carbohydrate (CHO, 1 g·kg–1·h–1) and essential amino acid (EAA, 9.25 g) solution containing glutamine (0.3 g/kg BW; GLN trial) versus an isoenergetic CHO–EAA solution without glutamine (control, CON trial) on muscle glycogen resynthesis and whole-body protein turnover following 90 min of cycling at 65% VO2 peak. Over the course of 3 h of recovery, muscle biopsies were taken to measure glycogen resynthesis and mixed muscle protein synthesis (MPS), by incorporation of [ring-2H5] phenylalanine. Infusion of [1-13C] leucine was used to measure whole-body protein turnover. Exercise resulted in a significant decrease in muscle glycogen (p < 0.05) with similar declines in each trial. Glycogen resynthesis following 3 h of recovery indicated no difference in total accumulation or rate of repletion. Leucine oxidation increased 2.5 fold (p < 0.05) during exercise, returned to resting levels immediately post-exercise,and was again elevated at 3 h post-exercise (p < 0.05). Leucine flux, an index of whole-body protein breakdown rate, was reduced during exercise, but increased to resting levels immediately post-exercise, and was further increased at 3 h post-exercise (p < 0.05), but only during the CON trial. Exercise resulted in a marked suppression of whole-body protein synthesis (50% of rest; p < 0.05), which was restored post-exercise; however, the addition of glutamine did not affect whole-body protein synthesis post-exercise. The rate of MPS was not different between trials. The addition of glutamine to a CHO + EAA beverage had no effect on post-exercise muscle glycogen resynthesis or muscle protein synthesis, but may suppress a rise in whole-body proteolysis during the later stages of recovery.


1989 ◽  
Vol 256 (5) ◽  
pp. E631-E639 ◽  
Author(s):  
G. N. Thompson ◽  
P. J. Pacy ◽  
H. Merritt ◽  
G. C. Ford ◽  
M. A. Read ◽  
...  

Whole body protein turnover was measured in six normal adults using a model based on a primed constant infusion of [2H5]phenylalanine and, independently, by an established method of a primed constant infusion of [1-13C]leucine. Isotopic plateau in plasma was achieved within 2 h for [2H5]phenylalanine and, in four of the subjects who received a priming dose of [2H4]tyrosine, for [2H4]tyrosine. In all subjects whole body protein turnover measured with the phenylalanine model (mean protein synthesis, 2.65 +/- (SD) 0.16 g.kg-1.24 h-1; catabolism, 3.58 +/- 0.26 g.kg-1.24 h-1) was similar to that measured using the leucine model (synthesis, 3.09 +/- 0.27 g.kg-1.24 h-1; catabolism, 3.70 +/- 0.35 g.kg-1.24 h-1). Mean forearm fractional muscle protein synthesis calculated by the phenylalanine model was 0.06 +/- 0.03%/h, which compares closely with literature values derived by other methods. The phenylalanine model allows the rapid assessment of whole body and muscle protein turnover from plasma samples alone, obviating the need for measurement of expired air CO2 production or enrichment.


1993 ◽  
Vol 84 (6) ◽  
pp. 655-661 ◽  
Author(s):  
J. Arnold ◽  
I. T. Campbell ◽  
Therese A. Samuels ◽  
J. C. Devlin ◽  
Ceri J. Green ◽  
...  

1. Whole body protein turnover was measured using a primed-constant infusion of L-[1−13C]leucine with measurement of breath 13CO2 production and plasma 13C α-ketoisocaproate enrichment. Ten fasting patients, requiring mechanical ventilation and suffering from multiple organ failure, and six healthy control subjects were studied. 2. Protein breakdown and leucine removal from the plasma for protein synthesis were significantly higher in the patients than in the control subjects (P <0.01). In addition, leucine oxidation was almost 75% higher in the patients than in the healthy control subjects (P <0.05). 3. Plasma concentrations of glucose, insulin and growth hormone were not different between the two groups, but those of glucagon (not significant), noradrenaline (P <0.05) and cortisol (P <0.01) were almost two- and three-fold higher in the patients than in the control subjects. 4. Mean energy expenditure, measured by indirect calorimetry, was 30% higher in the patients than in the healthy control subjects (P <0.01). 5. Combining the data from both groups of subjects and using multiple regression analysis, cortisol was found to be the most significant predictor of (i) protein breakdown (48% of variance explained), (ii) leucine oxidation (69%) and (iii) hourly energy expenditure (54%). 6. The present investigation using [13C]leucine tracer methods demonstrated, in patients with multiple organ failure, that whole body protein breakdown and synthesis increased concomitantly and were twice as high as rates measured in healthy control subjects. Of the hormones measured in the present study, Cortisol appears to have the most significant effect on whole body protein turnover.


2020 ◽  
Vol 112 (2) ◽  
pp. 303-317 ◽  
Author(s):  
Tyler A Churchward-Venne ◽  
Philippe J M Pinckaers ◽  
Joey S J Smeets ◽  
Milan W Betz ◽  
Joan M Senden ◽  
...  

ABSTRACT Background Protein ingestion increases skeletal muscle protein synthesis rates during recovery from endurance exercise. Objectives We aimed to determine the effect of graded doses of dietary protein co-ingested with carbohydrate on whole-body protein metabolism, and skeletal muscle myofibrillar (MyoPS) and mitochondrial (MitoPS) protein synthesis rates during recovery from endurance exercise. Methods In a randomized, double-blind, parallel-group design, 48 healthy, young, endurance-trained men (mean ± SEM age: 27 ± 1 y) received a primed continuous infusion of l-[ring-2H5]-phenylalanine, l-[ring-3,5-2H2]-tyrosine, and l-[1-13C]-leucine and ingested 45 g carbohydrate with either 0 (0 g PRO), 15 (15 g PRO), 30 (30 g PRO), or 45 (45 g PRO) g intrinsically l-[1-13C]-phenylalanine and l-[1-13C]-leucine labeled milk protein after endurance exercise. Blood and muscle biopsy samples were collected over 360 min of postexercise recovery to assess whole-body protein metabolism and both MyoPS and MitoPS rates. Results Protein intake resulted in ∼70%–74% of the ingested protein-derived phenylalanine appearing in the circulation. Whole-body net protein balance increased dose-dependently after ingestion of 0, 15, 30, or 45 g protein (mean ± SEM: −0.31± 0.16, 5.08 ± 0.21, 10.04 ± 0.30, and 13.49 ± 0.55 μmol phenylalanine · kg−1 · h−1, respectively; P &lt; 0.001). 30 g PRO stimulated a ∼46% increase in MyoPS rates (%/h) compared with 0 g PRO and was sufficient to maximize MyoPS rates after endurance exercise. MitoPS rates were not increased after protein ingestion; however, incorporation of dietary protein–derived l-[1-13C]-phenylalanine into de novo mitochondrial protein increased dose-dependently after ingestion of 15, 30, and 45 g protein at 360 min postexercise (0.018 ± 0.002, 0.034 ± 0.002, and 0.046 ± 0.003 mole percentage excess, respectively; P &lt; 0.001). Conclusions Protein ingested after endurance exercise is efficiently digested and absorbed into the circulation. Whole-body net protein balance and dietary protein–derived amino acid incorporation into mitochondrial protein respond to increasing protein intake in a dose-dependent manner. Ingestion of 30 g protein is sufficient to maximize MyoPS rates during recovery from a single bout of endurance exercise. This trial was registered at trialregister.nl as NTR5111.


2005 ◽  
Vol 288 (4) ◽  
pp. E645-E653 ◽  
Author(s):  
René Koopman ◽  
Anton J. M. Wagenmakers ◽  
Ralph J. F. Manders ◽  
Antoine H. G. Zorenc ◽  
Joan M. G. Senden ◽  
...  

The present study was designed to determine postexercise muscle protein synthesis and whole body protein balance following the combined ingestion of carbohydrate with or without protein and/or free leucine. Eight male subjects were randomly assigned to three trials in which they consumed drinks containing either carbohydrate (CHO), carbohydrate and protein (CHO+PRO), or carbohydrate, protein, and free leucine (CHO+PRO+Leu) following 45 min of resistance exercise. A primed, continuous infusion of l-[ ring-13C6]phenylalanine was applied, with blood samples and muscle biopsies collected to assess fractional synthetic rate (FSR) in the vastus lateralis muscle as well as whole body protein turnover during 6 h of postexercise recovery. Plasma insulin response was higher in the CHO+PRO+Leu compared with the CHO and CHO+PRO trials (+240 ± 19% and +77 ± 11%, respectively, P < 0.05). Whole body protein breakdown rates were lower, and whole body protein synthesis rates were higher, in the CHO+PRO and CHO+PRO+Leu trials compared with the CHO trial ( P < 0.05). Addition of leucine in the CHO+PRO+Leu trial resulted in a lower protein oxidation rate compared with the CHO+PRO trial. Protein balance was negative during recovery in the CHO trial but positive in the CHO+PRO and CHO+PRO+Leu trials. In the CHO+PRO+Leu trial, whole body net protein balance was significantly greater compared with values observed in the CHO+PRO and CHO trials ( P < 0.05). Mixed muscle FSR, measured over a 6-h period of postexercise recovery, was significantly greater in the CHO+PRO+Leu trial compared with the CHO trial (0.095 ± 0.006 vs. 0.061 ± 0.008%/h, respectively, P < 0.05), with intermediate values observed in the CHO+PRO trial (0.0820 ± 0.0104%/h). We conclude that coingestion of protein and leucine stimulates muscle protein synthesis and optimizes whole body protein balance compared with the intake of carbohydrate only.


2008 ◽  
Vol 32 (4) ◽  
pp. 341
Author(s):  
Stéphanie Chevalier ◽  
Olasunkanmi A.J. Adegoke ◽  
Linda Wykes ◽  
José A. Morais ◽  
Réjeanne Gougeon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document