scholarly journals Muscle Protein Synthesis and Whole-Body Protein Turnover Responses to Ingesting Essential Amino Acids, Intact Protein, and Protein-Containing Mixed Meals with Considerations for Energy Deficit

Nutrients ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2457 ◽  
Author(s):  
Jess A. Gwin ◽  
David D. Church ◽  
Robert R. Wolfe ◽  
Arny A. Ferrando ◽  
Stefan M. Pasiakos

Protein intake recommendations to optimally stimulate muscle protein synthesis (MPS) are derived from dose-response studies examining the stimulatory effects of isolated intact proteins (e.g., whey, egg) on MPS in healthy individuals during energy balance. Those recommendations may not be adequate during periods of physiological stress, specifically the catabolic stress induced by energy deficit. Providing supplemental intact protein (20–25 g whey protein, 0.25–0.3 g protein/kg per meal) during strenuous military operations that elicit severe energy deficit does not stimulate MPS-associated anabolic signaling or attenuate lean mass loss. This occurs likely because a greater proportion of the dietary amino acids consumed are targeted for energy-yielding pathways, whole-body protein synthesis, and other whole-body essential amino acid (EAA)-requiring processes than the proportion targeted for MPS. Protein feeding formats that provide sufficient energy to offset whole-body energy and protein-requiring demands during energy deficit and leverage EAA content, digestion, and absorption kinetics may optimize MPS under these conditions. Understanding the effects of protein feeding format-driven alterations in EAA availability and subsequent changes in MPS and whole-body protein turnover is required to design feeding strategies that mitigate the catabolic effects of energy deficit. In this manuscript, we review the effects, advantages, disadvantages, and knowledge gaps pertaining to supplemental free-form EAA, intact protein, and protein-containing mixed meal ingestion on MPS. We discuss the fundamental role of whole-body protein balance and highlight the importance of comprehensively assessing whole-body and muscle protein kinetics when evaluating the anabolic potential of varying protein feeding formats during energy deficit.

1988 ◽  
Vol 75 (4) ◽  
pp. 415-420 ◽  
Author(s):  
W. L. Morrison ◽  
J. N. A. Gibson ◽  
C. Scrimgeour ◽  
M. J. Rennie

1. We have investigated arteriovenous exchanges of tyrosine and 3-methylhistidine across leg tissue in the postabsorptive state as specific indicators of net protein balance and myofibrillar protein breakdown, respectively, in eight patients with emphysema and in 11 healthy controls. Whole-body protein turnover was measured using l-[1-13C]leucine. 2. Leg efflux of tyrosine was increased by 47% in emphysematous patients compared with normal control subjects, but 3-methylhistidine efflux was not significantly altered. 3. In emphysema, whole-body leucine flux was normal, whole-body leucine oxidation was increased, and whole-body protein synthesis was depressed. 4. These results indicate that the predominant mechanism of muscle wasting in emphysema is a fall in muscle protein synthesis, which is accompanied by an overall fall in whole-body protein turnover.


2006 ◽  
Vol 31 (5) ◽  
pp. 518-529 ◽  
Author(s):  
Sarah B. Wilkinson ◽  
Paul L. Kim ◽  
David Armstrong ◽  
Stuart M. Phillips

We examined the effect of a post-exercise oral carbohydrate (CHO, 1 g·kg–1·h–1) and essential amino acid (EAA, 9.25 g) solution containing glutamine (0.3 g/kg BW; GLN trial) versus an isoenergetic CHO–EAA solution without glutamine (control, CON trial) on muscle glycogen resynthesis and whole-body protein turnover following 90 min of cycling at 65% VO2 peak. Over the course of 3 h of recovery, muscle biopsies were taken to measure glycogen resynthesis and mixed muscle protein synthesis (MPS), by incorporation of [ring-2H5] phenylalanine. Infusion of [1-13C] leucine was used to measure whole-body protein turnover. Exercise resulted in a significant decrease in muscle glycogen (p < 0.05) with similar declines in each trial. Glycogen resynthesis following 3 h of recovery indicated no difference in total accumulation or rate of repletion. Leucine oxidation increased 2.5 fold (p < 0.05) during exercise, returned to resting levels immediately post-exercise,and was again elevated at 3 h post-exercise (p < 0.05). Leucine flux, an index of whole-body protein breakdown rate, was reduced during exercise, but increased to resting levels immediately post-exercise, and was further increased at 3 h post-exercise (p < 0.05), but only during the CON trial. Exercise resulted in a marked suppression of whole-body protein synthesis (50% of rest; p < 0.05), which was restored post-exercise; however, the addition of glutamine did not affect whole-body protein synthesis post-exercise. The rate of MPS was not different between trials. The addition of glutamine to a CHO + EAA beverage had no effect on post-exercise muscle glycogen resynthesis or muscle protein synthesis, but may suppress a rise in whole-body proteolysis during the later stages of recovery.


1989 ◽  
Vol 256 (5) ◽  
pp. E631-E639 ◽  
Author(s):  
G. N. Thompson ◽  
P. J. Pacy ◽  
H. Merritt ◽  
G. C. Ford ◽  
M. A. Read ◽  
...  

Whole body protein turnover was measured in six normal adults using a model based on a primed constant infusion of [2H5]phenylalanine and, independently, by an established method of a primed constant infusion of [1-13C]leucine. Isotopic plateau in plasma was achieved within 2 h for [2H5]phenylalanine and, in four of the subjects who received a priming dose of [2H4]tyrosine, for [2H4]tyrosine. In all subjects whole body protein turnover measured with the phenylalanine model (mean protein synthesis, 2.65 +/- (SD) 0.16 g.kg-1.24 h-1; catabolism, 3.58 +/- 0.26 g.kg-1.24 h-1) was similar to that measured using the leucine model (synthesis, 3.09 +/- 0.27 g.kg-1.24 h-1; catabolism, 3.70 +/- 0.35 g.kg-1.24 h-1). Mean forearm fractional muscle protein synthesis calculated by the phenylalanine model was 0.06 +/- 0.03%/h, which compares closely with literature values derived by other methods. The phenylalanine model allows the rapid assessment of whole body and muscle protein turnover from plasma samples alone, obviating the need for measurement of expired air CO2 production or enrichment.


1990 ◽  
Vol 78 (6) ◽  
pp. 613-619 ◽  
Author(s):  
W. L. Morrison ◽  
I. A. D. Bouchier ◽  
J. N. A. Gibson ◽  
M. J. Rennie

1. We investigated arteriovenous exchanges of tyrosine and 3-methylhistidine across leg tissue in the postabsorptive state as specific indices of net protein balance and myofibrillar protein breakdown, respectively, in eight patients with cirrhosis and in 11 healthy control subjects. Whole-body protein turnover was also measured using l-[1-13C]leucine. 2. Leg efflux of tyrosine was 45% greater in cirrhotic patients than in normal control subjects [−6.5(1.4 to −19.1) vs −4.2 (−2.2 to −7.7) μmol min−1 100 mg−1 of leg, median (range), P <0.025]. 3-Methylhistidine efflux was not significantly altered. 3. In cirrhosis, whole-body leucine flux was normal but whole-body leucine oxidation was elevated so that whole-body protein synthesis was depressed by 17%. 4. The results indicate the predominant mechanism of muscle wasting in cirrhosis to be a fall in muscle protein synthesis, which is accompanied by an overall fall in whole-body protein turnover.


1997 ◽  
Vol 128 (2) ◽  
pp. 233-246 ◽  
Author(s):  
S. A. NEUTZE ◽  
J. M. GOODEN ◽  
V. H. ODDY

This study used an experimental model, described in a companion paper, to examine the effects of feed intake on protein turnover in the small intestine of lambs. Ten male castrate lambs (∼ 10 months old) were offered, via continuous feeders, either 400 (n = 5) or 1200 (n = 5) g/day lucerne chaff, and mean experimental liveweights were 28 and 33 kg respectively. All lambs were prepared with catheters in the cranial mesenteric vein (CMV), femoral artery (FA), jugular vein and abomasum, and a blood flow probe around the CMV. Cr-EDTA (0·139 mg Cr/ml, ∼ 0·2 ml/min) was infused abomasally for 24 h and L-[2,6-3H]phenylalanine (Phe) (420±9·35 μCi into the abomasum) and L-[U-14C]phenylalanine (49·6±3·59 μCi into the jugular vein) were also infused during the last 8 h. Blood from the CMV and FA was sampled during the isotope infusions. At the end of infusions, lambs were killed and tissue (n = 4) and digesta (n = 2) samples removed from the small intestine (SI) of each animal. Transfers of labelled and unlabelled Phe were measured between SI tissue, its lumen and blood, enabling both fractional and absolute rates of protein synthesis and gain to be estimated.Total SI mass increased significantly with feed intake (P < 0·05), although not on a liveweight basis. Fractional rates of protein gain in the SI tended to increase (P = 0·12) with feed intake; these rates were −16·2 (±13·7) and 23·3 (±15·2) % per day in lambs offered 400 and 1200 g/day respectively. Mean protein synthesis and fractional synthesis rates (FSR), calculated from the mean retention of 14C and 3H in SI tissue, were both positively affected by feed intake (0·01 < P < 0·05). The choice of free Phe pool for estimating precursor specific radioactivity (SRA) for protein synthesis had a major effect on FSR. Assuming that tissue free Phe SRA represented precursor SRA, mean FSR were 81 (±15) and 145 (±24) % per day in lambs offered 400 and 1200 g/day respectively. Corresponding estimates for free Phe SRA in the FA and CMV were 28 (±2·9) and 42 (±3·5) % per day on 400 g/day, and 61 (±2·9) and 94 (±6·0) on 1200 g/day. The correct value for protein synthesis was therefore in doubt, although indirect evidence suggested that blood SRA (either FA or CMV) may be closest to true precursor SRA. This evidence included (i) comparison with flooding dose estimates of FSR, (ii) comparison of 3H[ratio ]14C Phe SRA in free Phe pools with this ratio in SI protein, and (iii) the proportion of SI energy use associated with protein synthesis.Using the experimental model, the proportion of small intestinal protein synthesis exported was estimated as 0·13–0·27 (depending on the choice of precursor) and was unaffected by feed intake. The contribution of the small intestine to whole body protein synthesis tended to be higher in lambs offered 1200 g/day (0·21) than in those offered 400 g/day (0·13). The data obtained in this study suggested a role for the small intestine in modulating amino acid supply with changes in feed intake. At high intake (1200 g/day), the small intestine increases in mass and CMV uptake of amino acids is less than absorption from the lumen, while at low intake (400 g/day), this organ loses mass and CMV uptake of amino acids exceeds that absorbed. The implications of these findings are discussed.


2020 ◽  
Vol 112 (2) ◽  
pp. 303-317 ◽  
Author(s):  
Tyler A Churchward-Venne ◽  
Philippe J M Pinckaers ◽  
Joey S J Smeets ◽  
Milan W Betz ◽  
Joan M Senden ◽  
...  

ABSTRACT Background Protein ingestion increases skeletal muscle protein synthesis rates during recovery from endurance exercise. Objectives We aimed to determine the effect of graded doses of dietary protein co-ingested with carbohydrate on whole-body protein metabolism, and skeletal muscle myofibrillar (MyoPS) and mitochondrial (MitoPS) protein synthesis rates during recovery from endurance exercise. Methods In a randomized, double-blind, parallel-group design, 48 healthy, young, endurance-trained men (mean ± SEM age: 27 ± 1 y) received a primed continuous infusion of l-[ring-2H5]-phenylalanine, l-[ring-3,5-2H2]-tyrosine, and l-[1-13C]-leucine and ingested 45 g carbohydrate with either 0 (0 g PRO), 15 (15 g PRO), 30 (30 g PRO), or 45 (45 g PRO) g intrinsically l-[1-13C]-phenylalanine and l-[1-13C]-leucine labeled milk protein after endurance exercise. Blood and muscle biopsy samples were collected over 360 min of postexercise recovery to assess whole-body protein metabolism and both MyoPS and MitoPS rates. Results Protein intake resulted in ∼70%–74% of the ingested protein-derived phenylalanine appearing in the circulation. Whole-body net protein balance increased dose-dependently after ingestion of 0, 15, 30, or 45 g protein (mean ± SEM: −0.31± 0.16, 5.08 ± 0.21, 10.04 ± 0.30, and 13.49 ± 0.55 μmol phenylalanine · kg−1 · h−1, respectively; P &lt; 0.001). 30 g PRO stimulated a ∼46% increase in MyoPS rates (%/h) compared with 0 g PRO and was sufficient to maximize MyoPS rates after endurance exercise. MitoPS rates were not increased after protein ingestion; however, incorporation of dietary protein–derived l-[1-13C]-phenylalanine into de novo mitochondrial protein increased dose-dependently after ingestion of 15, 30, and 45 g protein at 360 min postexercise (0.018 ± 0.002, 0.034 ± 0.002, and 0.046 ± 0.003 mole percentage excess, respectively; P &lt; 0.001). Conclusions Protein ingested after endurance exercise is efficiently digested and absorbed into the circulation. Whole-body net protein balance and dietary protein–derived amino acid incorporation into mitochondrial protein respond to increasing protein intake in a dose-dependent manner. Ingestion of 30 g protein is sufficient to maximize MyoPS rates during recovery from a single bout of endurance exercise. This trial was registered at trialregister.nl as NTR5111.


2004 ◽  
Vol 286 (4) ◽  
pp. E658-E664 ◽  
Author(s):  
Dominic S. C. Raj ◽  
Elizabeth A. Dominic ◽  
Robert Wolfe ◽  
Vallabh O. Shah ◽  
Arthur Bankhurst ◽  
...  

Serum albumin, fibrinogen levels, and lean body mass are important predictors of outcome in end-stage renal disease (ESRD). We estimated the fractional synthesis rates of albumin (FSR-A), fibrinogen (FSR-F), and muscle protein (FSR-M) in nine ESRD patients and eight controls, using primed constant infusion of l-[ ring-13C6]phenylalanine. Cytokine profile and arteriovenous balance of amino acids were also measured. ESRD patients were studied before (Pre-HD) and during hemodialysis (HD). Plasma IL-6, IL-10, and C-reactive protein increased significantly during HD. Despite a decrease in the delivery of amino acids to the leg, the outflow of the amino acids increased during HD. The net balance of amino acids became more negative during HD, indicating release from the muscle. HD increased leg muscle protein synthesis (45%) and catabolism (108%) but decreased whole body proteolysis (15%). FSR-A during HD (9.7 ± 0.9%/day) was higher than pre-HD (6.5 ± 0.9%/day) and controls (5.8 ± 0.5%/day, P < 0.01). FSR-F increased during HD (19.7 ± 2.6%/day vs. 11.8 ± 0.6%/day, P < 0.01), but it was not significantly different from that of controls (14.4 ± 1.4%/day). FSR-M intradialysis (1.77 ± 0.19%/day) was higher than pre-HD (1.21 ± 0.25%/day) and controls (1.30 ± 0.32%/day, P < 0.001). Pre-HD FSR-A, FSR-F, and FSR-M values were comparable to those of controls. There was a significant and positive correlation between plasma IL-6 and the FSRs. Thus, in ESRD patients without metabolic acidosis, the fractional synthesis rates of albumin, fibrinogen, and muscle protein are not decreased pre-HD. However, HD increases the synthesis of albumin, fibrinogen, and muscle protein. The coordinated increase in the FSRs is facilitated by constant delivery of amino acids derived from the muscle catabolism and intradialytic increase in IL-6.


2005 ◽  
Vol 288 (4) ◽  
pp. E645-E653 ◽  
Author(s):  
René Koopman ◽  
Anton J. M. Wagenmakers ◽  
Ralph J. F. Manders ◽  
Antoine H. G. Zorenc ◽  
Joan M. G. Senden ◽  
...  

The present study was designed to determine postexercise muscle protein synthesis and whole body protein balance following the combined ingestion of carbohydrate with or without protein and/or free leucine. Eight male subjects were randomly assigned to three trials in which they consumed drinks containing either carbohydrate (CHO), carbohydrate and protein (CHO+PRO), or carbohydrate, protein, and free leucine (CHO+PRO+Leu) following 45 min of resistance exercise. A primed, continuous infusion of l-[ ring-13C6]phenylalanine was applied, with blood samples and muscle biopsies collected to assess fractional synthetic rate (FSR) in the vastus lateralis muscle as well as whole body protein turnover during 6 h of postexercise recovery. Plasma insulin response was higher in the CHO+PRO+Leu compared with the CHO and CHO+PRO trials (+240 ± 19% and +77 ± 11%, respectively, P < 0.05). Whole body protein breakdown rates were lower, and whole body protein synthesis rates were higher, in the CHO+PRO and CHO+PRO+Leu trials compared with the CHO trial ( P < 0.05). Addition of leucine in the CHO+PRO+Leu trial resulted in a lower protein oxidation rate compared with the CHO+PRO trial. Protein balance was negative during recovery in the CHO trial but positive in the CHO+PRO and CHO+PRO+Leu trials. In the CHO+PRO+Leu trial, whole body net protein balance was significantly greater compared with values observed in the CHO+PRO and CHO trials ( P < 0.05). Mixed muscle FSR, measured over a 6-h period of postexercise recovery, was significantly greater in the CHO+PRO+Leu trial compared with the CHO trial (0.095 ± 0.006 vs. 0.061 ± 0.008%/h, respectively, P < 0.05), with intermediate values observed in the CHO+PRO trial (0.0820 ± 0.0104%/h). We conclude that coingestion of protein and leucine stimulates muscle protein synthesis and optimizes whole body protein balance compared with the intake of carbohydrate only.


1989 ◽  
Vol 62 (2) ◽  
pp. 297-310 ◽  
Author(s):  
H. A. Abdul–Razzaq ◽  
R. Bickerstaffe

The effect of acetic or propionic acid rumen fermentation patterns on whole-body protein turnover, tissue protein synthetic rates and body composition was investigated in growing lambs. Protein turnover was assessed using a continuous intravenous infusion of [2,3-3H]tyrosine and tissue protein fractional synthetic rates (FSR) from the specific activities of plasma free, intracellular free and tissue bound tyrosine. Only the FSR of muscle tissue approached significance. The high FSR in the propionic group was attributed to the high plasma insulin concentration. Values for whole-body protein synthesis, corrected for tyrosine oxidation, were similar to those obtained by summating protein synthesis in individual tissues, confirming that tyrosine oxidation should be measured accurately if reliable whole-body protein synthesis values are required. Tyrosine oxidation and flux were high in the acetic acid group, suggesting that amino acids are used for gluconeogenesis. The high protein turnover rate probably ensures an adequate supply of gluconeogenic amino acids and that the penalty of mobilizing body proteins for gluconeogenic amino acids is minimal. In the propionic acid group, high plasma glucose and insulin concentrations were associated with a low protein turnover rate, high ratio of deposited: synthesized protein and a high body fat content. It is concluded that changing the proportion of ruminal volatile fatty acids influences protein turnover, protein synthesis and the efficiency of protein retention. Such factors probably contribute, indirectly, to the observed differences in body composition.


Sign in / Sign up

Export Citation Format

Share Document