Increased Whole Body Protein Breakdown Predominates over Increased Whole Body Protein Synthesis in Multiple Organ Failure

1993 ◽  
Vol 84 (6) ◽  
pp. 655-661 ◽  
Author(s):  
J. Arnold ◽  
I. T. Campbell ◽  
Therese A. Samuels ◽  
J. C. Devlin ◽  
Ceri J. Green ◽  
...  

1. Whole body protein turnover was measured using a primed-constant infusion of L-[1−13C]leucine with measurement of breath 13CO2 production and plasma 13C α-ketoisocaproate enrichment. Ten fasting patients, requiring mechanical ventilation and suffering from multiple organ failure, and six healthy control subjects were studied. 2. Protein breakdown and leucine removal from the plasma for protein synthesis were significantly higher in the patients than in the control subjects (P <0.01). In addition, leucine oxidation was almost 75% higher in the patients than in the healthy control subjects (P <0.05). 3. Plasma concentrations of glucose, insulin and growth hormone were not different between the two groups, but those of glucagon (not significant), noradrenaline (P <0.05) and cortisol (P <0.01) were almost two- and three-fold higher in the patients than in the control subjects. 4. Mean energy expenditure, measured by indirect calorimetry, was 30% higher in the patients than in the healthy control subjects (P <0.01). 5. Combining the data from both groups of subjects and using multiple regression analysis, cortisol was found to be the most significant predictor of (i) protein breakdown (48% of variance explained), (ii) leucine oxidation (69%) and (iii) hourly energy expenditure (54%). 6. The present investigation using [13C]leucine tracer methods demonstrated, in patients with multiple organ failure, that whole body protein breakdown and synthesis increased concomitantly and were twice as high as rates measured in healthy control subjects. Of the hormones measured in the present study, Cortisol appears to have the most significant effect on whole body protein turnover.

1990 ◽  
Vol 78 (6) ◽  
pp. 613-619 ◽  
Author(s):  
W. L. Morrison ◽  
I. A. D. Bouchier ◽  
J. N. A. Gibson ◽  
M. J. Rennie

1. We investigated arteriovenous exchanges of tyrosine and 3-methylhistidine across leg tissue in the postabsorptive state as specific indices of net protein balance and myofibrillar protein breakdown, respectively, in eight patients with cirrhosis and in 11 healthy control subjects. Whole-body protein turnover was also measured using l-[1-13C]leucine. 2. Leg efflux of tyrosine was 45% greater in cirrhotic patients than in normal control subjects [−6.5(1.4 to −19.1) vs −4.2 (−2.2 to −7.7) μmol min−1 100 mg−1 of leg, median (range), P <0.025]. 3-Methylhistidine efflux was not significantly altered. 3. In cirrhosis, whole-body leucine flux was normal but whole-body leucine oxidation was elevated so that whole-body protein synthesis was depressed by 17%. 4. The results indicate the predominant mechanism of muscle wasting in cirrhosis to be a fall in muscle protein synthesis, which is accompanied by an overall fall in whole-body protein turnover.


2015 ◽  
Vol 34 (1) ◽  
pp. 95-100 ◽  
Author(s):  
Olav Rooyackers ◽  
Ramin Kouchek-Zadeh ◽  
Inga Tjäder ◽  
Åke Norberg ◽  
Maria Klaude ◽  
...  

1988 ◽  
Vol 75 (4) ◽  
pp. 415-420 ◽  
Author(s):  
W. L. Morrison ◽  
J. N. A. Gibson ◽  
C. Scrimgeour ◽  
M. J. Rennie

1. We have investigated arteriovenous exchanges of tyrosine and 3-methylhistidine across leg tissue in the postabsorptive state as specific indicators of net protein balance and myofibrillar protein breakdown, respectively, in eight patients with emphysema and in 11 healthy controls. Whole-body protein turnover was measured using l-[1-13C]leucine. 2. Leg efflux of tyrosine was increased by 47% in emphysematous patients compared with normal control subjects, but 3-methylhistidine efflux was not significantly altered. 3. In emphysema, whole-body leucine flux was normal, whole-body leucine oxidation was increased, and whole-body protein synthesis was depressed. 4. These results indicate that the predominant mechanism of muscle wasting in emphysema is a fall in muscle protein synthesis, which is accompanied by an overall fall in whole-body protein turnover.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 1661-1661
Author(s):  
Jacob Mey ◽  
John Kirwan

Abstract Objectives We investigated the effect of consuming a whole-grain diet on whole-body protein metabolism compared to a macronutrient-matched refined-grain diet in adults with overweight/obesity using labelled amino acids (ClinicalTrials.gov Identifier: NCT01411540). Methods We conducted a randomized, controlled crossover trial in 14 adults with overweight/obesity (age: 40 ± 7 yrs, BMI: 33 ± 5 kg/m2) in which isocaloric, macronutrient-matched whole-grain (WG) and refined-grain (RG) diets were fully provided for two 8-week periods (with a 10-week washout period). Diets differed only in the inclusion of whole grains (50 g/1000 kcal). Body composition was measured via DEXA. Whole-body protein kinetics were assessed before and after each diet in the fasted state (13C-Leucine, primed, constant infusion) and over 24 hours (15N-Glycine, bolus). Protein kinetics were normalized to fat-free mass (FFM). Results Both diets resulted in mild weight loss (WG: −2.0 ± 2.5 kg; RG: −2.9 ± 3.3 kg; both P = 0.01 compared to baseline). Fasted-state leucine kinetics revealed greater protein synthesis (WG: 205 ± 61 µmol/kgFFM/hr; RG: 178 ± 36 µmol/kgFFM/hr; P = 0.04) and protein breakdown (WG: 235 ± 68 µmol/kgFFM/hr; RG: 203 ± 40 µmol/kgFFM/hr, P = 0.03) on a WG vs RG diet. This resulted in a more negative fasted-state net balance on a WG diet (WG: −30 ± 8 µmol/kg/hr; RG: −25 ± 6 µmol/kg/hr, P = 0.02). In contrast, 24-hour whole-body protein turnover measured by the end-product method (15N-Glycine), revealed greater protein synthesis (WG: 316 ± 135 mg protein/kgFFM/hr; RG: 250 ± 94 mg protein/kgFFM/hr) with no difference in protein breakdown, yielding a more positive 24-hr net balance on a WG diet (WG: 31 ± 21 mg protein/kgFFM/hr; RG: 10 ± 34 mg protein/kgFFM/hr). Conclusions A whole-grain diet increases whole-body leucine flux and results in a greater 24-hr net protein balance in adults with overweight/obesity compared to a refined-grain diet. This trial suggests whole-grains have an independent effect on protein metabolism and may benefit adults with overweight/obesity. Funding Sources This research was supported by the NIH (UL1 RR024989, T32DK007319 (JPK); T32AT004094 (JTM – trainee)) and an investigator-initiated grant from Nestle (JPK). Nestle Product Technology Center and Cereal Partners Worldwide provided the study meals and foods.


1995 ◽  
Vol 268 (6) ◽  
pp. E1083-E1088 ◽  
Author(s):  
C. Benedek ◽  
P. Y. Berclaz ◽  
E. Jequier ◽  
Y. Schutz

Body composition, resting energy expenditure (REE), and whole body protein metabolism were studied in 26 young and 28 elderly Gambian men matched for body mass index during the dry season in a rural village in The Gambia. REE was measured by indirect calorimetry (hood system) in the fasting state and after five successive meals. Rates of whole body nitrogen flux, protein synthesis, and protein breakdown were determined in the fed state from the level of isotopic enrichment of urinary ammonia over a period of 12 h after a single oral dose of [15N]glycine. Expressed in absolute value, REE was significantly lower in the elderly compared with the young group (3.21 +/- 0.07 vs. 4.04 +/- 0.07 kJ/min, P < 0.001) and when adjusted to body weight (3.29 +/- 0.05 vs. 3.96 +/- 0.05 kJ/min, P < 0.0001) and fat-free mass (FFM; 3.38 +/- 0.01 vs. 3.87 +/- 0.01 kJ/min, P < 0.0001). The rate of protein synthesis averaged 207 +/- 13 g protein/day in the elderly and 230 +/- 13 g protein/day in the young group, whereas protein breakdown averaged 184 +/- 13 g protein/day in the elderly and 203 +/- 13 g protein/day in the young group (nonsignificant). When values were adjusted for body weight or FFM, they did not reveal any difference between the two groups. It is concluded that the reduced REE adjusted for body composition observed in elderly Gambian men is not explained by a decrease in protein turnover.


1997 ◽  
Vol 128 (2) ◽  
pp. 233-246 ◽  
Author(s):  
S. A. NEUTZE ◽  
J. M. GOODEN ◽  
V. H. ODDY

This study used an experimental model, described in a companion paper, to examine the effects of feed intake on protein turnover in the small intestine of lambs. Ten male castrate lambs (∼ 10 months old) were offered, via continuous feeders, either 400 (n = 5) or 1200 (n = 5) g/day lucerne chaff, and mean experimental liveweights were 28 and 33 kg respectively. All lambs were prepared with catheters in the cranial mesenteric vein (CMV), femoral artery (FA), jugular vein and abomasum, and a blood flow probe around the CMV. Cr-EDTA (0·139 mg Cr/ml, ∼ 0·2 ml/min) was infused abomasally for 24 h and L-[2,6-3H]phenylalanine (Phe) (420±9·35 μCi into the abomasum) and L-[U-14C]phenylalanine (49·6±3·59 μCi into the jugular vein) were also infused during the last 8 h. Blood from the CMV and FA was sampled during the isotope infusions. At the end of infusions, lambs were killed and tissue (n = 4) and digesta (n = 2) samples removed from the small intestine (SI) of each animal. Transfers of labelled and unlabelled Phe were measured between SI tissue, its lumen and blood, enabling both fractional and absolute rates of protein synthesis and gain to be estimated.Total SI mass increased significantly with feed intake (P < 0·05), although not on a liveweight basis. Fractional rates of protein gain in the SI tended to increase (P = 0·12) with feed intake; these rates were −16·2 (±13·7) and 23·3 (±15·2) % per day in lambs offered 400 and 1200 g/day respectively. Mean protein synthesis and fractional synthesis rates (FSR), calculated from the mean retention of 14C and 3H in SI tissue, were both positively affected by feed intake (0·01 < P < 0·05). The choice of free Phe pool for estimating precursor specific radioactivity (SRA) for protein synthesis had a major effect on FSR. Assuming that tissue free Phe SRA represented precursor SRA, mean FSR were 81 (±15) and 145 (±24) % per day in lambs offered 400 and 1200 g/day respectively. Corresponding estimates for free Phe SRA in the FA and CMV were 28 (±2·9) and 42 (±3·5) % per day on 400 g/day, and 61 (±2·9) and 94 (±6·0) on 1200 g/day. The correct value for protein synthesis was therefore in doubt, although indirect evidence suggested that blood SRA (either FA or CMV) may be closest to true precursor SRA. This evidence included (i) comparison with flooding dose estimates of FSR, (ii) comparison of 3H[ratio ]14C Phe SRA in free Phe pools with this ratio in SI protein, and (iii) the proportion of SI energy use associated with protein synthesis.Using the experimental model, the proportion of small intestinal protein synthesis exported was estimated as 0·13–0·27 (depending on the choice of precursor) and was unaffected by feed intake. The contribution of the small intestine to whole body protein synthesis tended to be higher in lambs offered 1200 g/day (0·21) than in those offered 400 g/day (0·13). The data obtained in this study suggested a role for the small intestine in modulating amino acid supply with changes in feed intake. At high intake (1200 g/day), the small intestine increases in mass and CMV uptake of amino acids is less than absorption from the lumen, while at low intake (400 g/day), this organ loses mass and CMV uptake of amino acids exceeds that absorbed. The implications of these findings are discussed.


Nutrients ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2457 ◽  
Author(s):  
Jess A. Gwin ◽  
David D. Church ◽  
Robert R. Wolfe ◽  
Arny A. Ferrando ◽  
Stefan M. Pasiakos

Protein intake recommendations to optimally stimulate muscle protein synthesis (MPS) are derived from dose-response studies examining the stimulatory effects of isolated intact proteins (e.g., whey, egg) on MPS in healthy individuals during energy balance. Those recommendations may not be adequate during periods of physiological stress, specifically the catabolic stress induced by energy deficit. Providing supplemental intact protein (20–25 g whey protein, 0.25–0.3 g protein/kg per meal) during strenuous military operations that elicit severe energy deficit does not stimulate MPS-associated anabolic signaling or attenuate lean mass loss. This occurs likely because a greater proportion of the dietary amino acids consumed are targeted for energy-yielding pathways, whole-body protein synthesis, and other whole-body essential amino acid (EAA)-requiring processes than the proportion targeted for MPS. Protein feeding formats that provide sufficient energy to offset whole-body energy and protein-requiring demands during energy deficit and leverage EAA content, digestion, and absorption kinetics may optimize MPS under these conditions. Understanding the effects of protein feeding format-driven alterations in EAA availability and subsequent changes in MPS and whole-body protein turnover is required to design feeding strategies that mitigate the catabolic effects of energy deficit. In this manuscript, we review the effects, advantages, disadvantages, and knowledge gaps pertaining to supplemental free-form EAA, intact protein, and protein-containing mixed meal ingestion on MPS. We discuss the fundamental role of whole-body protein balance and highlight the importance of comprehensively assessing whole-body and muscle protein kinetics when evaluating the anabolic potential of varying protein feeding formats during energy deficit.


1991 ◽  
Vol 261 (1) ◽  
pp. R106-R116
Author(s):  
N. W. Istfan ◽  
P. R. Ling ◽  
G. L. Blackburn ◽  
B. R. Bistrian

To evaluate the accuracy of in vivo estimates of protein synthesis and breakdown, measurements of plasma and tissue leucine kinetics were made in rat tumor tissues at different conditions of growth by use of constant intravenous infusion of [14C]leucine. These measurements were made in Yoshida sarcoma tumors on days 10 and 13 after implantation, with and without tumor necrosis factor (TNF) infusion and on day 10 in Walker-256 carcinosarcoma. Expressed as micromoles of leucine per gram tissue, tumor protein breakdown increased (P less than 0.01) from 0.32 +/- 0.02 to 0.52 +/- 0.09 (SE) mumol/h, with progress of the Yoshida sarcoma tumor between days 10 and 13 after implantation. Similarly, TNF increased tumor proteolysis on day 10 (0.43 +/- 0.03 mumol.h-1.g-1, P less than 0.05 vs. day 10 control) but not on day 13 after implantation of the Yoshida tumor. Estimates of growth derived from the difference between protein synthesis and breakdown rates were not statistically different from those based on actual tumor volume changes in both tumor models. However, estimates of “whole body” protein metabolism (plasma leucine flux) were not affected either by tumor aging or by treatment with TNF. This study shows that in vivo estimates of tissue protein metabolism based on our [14C]leucine constant infusion model closely reflect the growth characteristic of that tissue. A cytotoxic perfusion-independent effect for intravenous TNF on growing tumor tissue is demonstrable as increased protein breakdown. Furthermore, the commonly used concept of whole body protein metabolism, derived solely from tracer dilution in plasma, is an oversimplification.


1995 ◽  
Vol 89 (6) ◽  
pp. 601-609 ◽  
Author(s):  
Ceri J. Green ◽  
I. T. Campbell ◽  
Ellen O'sullivan ◽  
S. Underhill ◽  
D. P. M. McLaren ◽  
...  

1. Patients suffering trauma and sepsis are insulin resistant, but no studies have specifically been made of patients suffering multiple organ failure. 2. We have studied exogenous glucose utilization in multiple organ failure using a combination of the hyperglycaemic glucose clamp and indirect calorimetry to quantify glucose utilization in multiple organ failure, partitioning it into oxidative and non-oxidative disposal (storage). 3. Fourteen septic patients with multiple organ failure were studied. APACHE II (Acute Physiological and Chronic Health Evaluation Mark II) scores on the day of the study ranged from 11 to 31 (median 16). Twenty percent d-glucose was infused and blood glucose was clamped at 12 mmol/l for 3 h. The results were compared with those obtained on seven healthy control subjects. 4. Glucose utilization and energy expenditure were similar in the two groups for the first 90 min of the clamp, after which glucose utilization and energy expenditure increased steadily in the control subjects but did not change in the patients. Respiratory exchange ratio rose in both groups; considered over the whole of the clamp period, respiratory exchange ratio was slightly lower in the patients than in the control subjects (P < 0.05) but not at any specific time point. Glucose oxidation rose in both groups but non-oxidative glucose disposal (storage) rose only in the control subjects. Glucose oxidation was slightly lower in the patients (P < 0.05) but not at any specific time point and there was no difference between the groups in the amount by which glucose oxidation increased. Non-oxidative disposal in the patients fell significantly (P < 0.01) over the course of the clamp and was significantly lower than in the control subjects (P < 0.01) 5. Growth hormone increased in response to glucose infusion in the patients but not in the control subjects. 6. Like patients suffering uncomplicated sepsis or trauma, patients with multiple organ failure are also insulin resistant. The defect appears to lie in an impairment of the ability to store glucose rather than oxidize it, and this may be due in part to the increase in growth hormone in patients with multiple organ failure.


Sign in / Sign up

Export Citation Format

Share Document