Effect of Inhalation of 30% Nitrous Oxide on Spectral Components of Heart Rate Variability in Conscious man

1993 ◽  
Vol 85 (4) ◽  
pp. 389-392 ◽  
Author(s):  
D. C. Galletly ◽  
P. D. Tobin ◽  
B.J. Robinson ◽  
T. Corfiatis

1. Periodicities in cardiac interbeat interval may be resolved into discrete frequency components by applying Fourier analysis to heart rate time series. Low-frequency components (<0.15 Hz) are believed to be under parasympathetic and sympathetic control, whereas a higher frequency component in phase with respiration is believed to be entirely parasympathetic. The ratio of the power in the low-/high-frequency spectrum gives an estimate of sympathetic/para-sympathetic balance. 2. This study examined, using heart rate variability spectral analysis, the cardiac autonomic effects of breathing 30% N2O in normal subjects. While supine, the inhalation of N2O caused a significant fall in high-frequency power and a rise in the low-/high-frequency spectrum. During air breathing, tilting caused a significant rise in the mean blood pressure, heart rate, low-frequency power and low-/high-frequency spectrum. During N2O breathing, tilting caused a rise in the heart rate and the mean blood pressure, but no significant alteration in the power of individual spectral components. During tilting, the heart rate, the low-frequency and low-/high-frequency spectrum were less when breathing N2O than when breathing air. 3. These observations are consistent with the effect of N2O being an enhanced sympathetic balance of sinoatrial control, with the primary effect being through reduced parasympathetic tone. Enhanced sympathetic dominance of heart rate variability was seen on standing while subjects breathed air, but this effect was blunted with N2O.

1996 ◽  
Vol 271 (2) ◽  
pp. H455-H460 ◽  
Author(s):  
K. P. Davy ◽  
N. L. Miniclier ◽  
J. A. Taylor ◽  
E. T. Stevenson ◽  
D. R. Seals

Coronary heart disease (CHD) and cardiac sudden death (CSD) incidence accelerates after menopause, but the incidence is lower in physically active versus less active women. Low heart rate variability (HRV) is a risk factor for CHD and CSD. The purpose of the present investigation was to test the hypothesis that HRV at rest is greater in physically active compared with less active postmenopausal women. If true, we further hypothesized that the greater HRV in the physically active women would be closely associated with an elevated spontaneous cardiac baroreflex sensitivity (SBRS). HRV (both time and frequency domain measures) and SBRS (sequence method) were measured during 5-min periods of controlled frequency breathing (15 breaths/min) in the supine, sitting, and standing postures in 9 physically active postmenopausal women (age = 53 +/- 1 yr) and 11 age-matched controls (age = 56 +/- 2 yr). Body weight, body mass index, and body fat percentage were lower (P < 0.01) and maximal oxygen uptake was higher (P < 0.01) in the physically active group. The standard deviation of the R-R intervals (time domain measure) was higher in all postures in the active women (P < 0.05) as were the high-frequency, low-frequency, and total power of HRV. SBRS also was higher (P < 0.05) in the physically active women in all postures and accounted for approximately 70% of the variance in the high-frequency power of HRV (P < 0.05). The results of the present investigation indicate that physically active postmenopausal women demonstrate higher levels of HRV compared with age-matched, less active women. Furthermore, SBRS accounted for the majority of the variance in the high-frequency power of HRV, suggesting the possibility of a mechanistic link with cardiac vagal modulation of heart rate. Our findings may provide insight into a possible cardioprotective mechanism in physically active postmenopausal women.


2015 ◽  
Vol 24 (2) ◽  
pp. 118-127 ◽  
Author(s):  
Muna H. Hammash ◽  
Debra K. Moser ◽  
Susan K. Frazier ◽  
Terry A. Lennie ◽  
Melanie Hardin-Pierce

BackgroundWeaning from mechanical ventilation to spontaneous breathing is associated with changes in the hemodynamic and autonomic nervous systems that are reflected by heart rate variability. Although cardiac dysrhythmias are an important manifestation of hemodynamic alterations, the impact of heart rate variability on the occurrence of dysrhythmias during weaning has not been specifically studied.ObjectivesTo describe differences in heart rate variability spectral power and occurrence of cardiac dysrhythmias at baseline and during the initial trial of weaning from mechanical ventilation and to evaluate the impact of heart rate variability during weaning on occurrence of dysrhythmias.MethodContinuous 3-lead electrocardiographic recordings were collected from 35 patients receiving mechanical ventilation for 24 hours at baseline and during the initial weaning trial. Heart rate variability was evaluated by using spectral power analysis.ResultsLow-frequency power increased (P = .04) and high-frequency and very-low-frequency power did not change during weaning. The mean number of supraventricular ectopic beats per hour during weaning was higher than the mean at baseline (P &lt; .001); the mean of ventricular ectopic beats did not change. Low-frequency power was a predictor of ventricular and supraventricular ectopic beats during weaning (P &lt; .001). High-frequency power was predictive of ventricular and supraventricular (P = .02) ectopic beats during weaning. Very-low-frequency power was predictive of ventricular ectopic beats (P &lt; .001) only.ConclusionHeart rate variability power spectra during weaning were predictive of dysrhythmias. (American Journal of Critical Care. 2015;24:118–127)


Circulation ◽  
2020 ◽  
Vol 141 (Suppl_1) ◽  
Author(s):  
Rosangela Hoshi ◽  
Paulo A LOTUFO ◽  
Itamar S Santos ◽  
Alessandra C Goulart ◽  
Jose-Geraldo Mill ◽  
...  

Background: Both conditions as a more width common carotid artery intima-media thickness (cIMT), and a low heart rate variability (HRV) have been associated with cardiovascular health-adverse outcomes. Although previous studies have somehow explored the relationship between these markers, they have not credited the influences exerted by factors such as aging, demographics, and lifestyle variables. Aim: to investigate whether cardio autonomic alterations are accompanied or not by subclinical atherosclerosis, in apparently healthy men and women aged 35 to 74 years-old examined at the baseline of the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). Methods: The Heart Rate Variability was evaluated on 5-min segments of beat-to-beat heart rate recordings using linear time and frequency domain analyses. The c-IMT images were performed using a Toshiba (Aplio XG™) with a 7.5 MHz linear transducer. The c-IMT was measured in the outer wall during three cardiac cycles. The images were analyzed with specific software (MIA™, Coralville, IA). For this study, c-IMT was defined as the average between the mean left and mean right c-IMT values, and it was analyzed as a continuous and categorized variable (P<75 or P >= 75). Multiple linear models using continuous variables and multivariate logistic regression with categorized cIMT and HRV quartiles were performed. Results: Out of 7,201 participants eligible for analyses, 1,685 (23.4%) presented cIM >= 75th percentile. We found significantly reduced HRV variables in subjects with cIMT>=P75 in comparison to those with cIMT<P75: standard deviation of NN interval (SDNN) 33.0 ms vs. 37.0ms( P< 0.001); root of the mean of the sum of the squares of differences between adjacent NN intervals (RMSSD) 22.0 ms vs. 26.0ms (P< 0.001); Low-Frequency 191.0ms 2 vs. 260.0ms 2 ( P< 0.001); High-Frequency 164.0 ms 2 vs. 238.5ms 2 ( P< 0.001). In a crude analysis, an increased Odds Ratio (OR)and 95% Confidence Intervals for cIMT >=P75 was verified within the lowest two quartiles of Low-Frequency:1st quartile, OR = 1.75 (95%CI: 1.39 to 2.19); 2nd quartile, OR= 1.53 (1.25 to 1.87).The same was observed for High-Frequency:1st quartile, OR = 1.94 (1.38 to 2.73); 2nd quartile, OR= 1.60 (1.20 to 2.15). However, those associations did not remain after adjustments for anthropometric and clinical variables for Low-Frequency (1st quartile, OR= 1.08 (0.83 to 1.40); 2nd quartile, OR= 1.22 (0.97 to1.55), and for High Frequency, 1st quartile, OR= 1.16 (0.77 to 1.73); 2nd quartile, OR= 1.17 (0.83 to 1.64). Conclusions: Subjects with cIMT greater or equal to 75th percentile presented lower HRV values. However, no independent relationships were detected between cIMT and HRV after multivariate adjustment, suggesting that they may assess different and complementary domains and provide relevant, useful, and non-redundant information of cardiovascular risk.


2014 ◽  
Vol 11 (8) ◽  
pp. 1614-1621 ◽  
Author(s):  
Kaisu Marjut Kaikkonen ◽  
Raija irmeli Korpelainen ◽  
Mikko P. Tulppo ◽  
Hannu Sakari Kaikkonen ◽  
Marja Liisa Vanhala ◽  
...  

Background:Autonomic nervous system (ANS) dysfunction and obesity are intrinsically related to each other. In normal-weight subjects physical activity (PA) and fitness are related to cardiovascular autonomic regulation, providing evidence that aerobic training may improve ANS functioning measured by heart rate variability (HRV). The goal of this study was to investigate the association between lifetime PA, aerobic fitness and HRV in obese adults.Methods:Participants included 107 (87 females) volunteers (mean age 44.5 years, median BMI 35.7) who completed health and lifestyle questionnaires and measurements of maximal aerobic performance, anthropometry and 24 h HRV.Results:In the multivariate linear regression analyses, lifetime physical activity explained 40% of the variance in normal R-R intervals (SDNN). Each 1-category increase in the activity index increased SDNN by 15.4 (P = .009) and 24% of the variance in natural logarithmic value of ultra-low frequency power (P = .050). High measured VO2max explained 45% of the variance in natural logarithmic value of high-frequency power (P = .009) and 25% of the variance in low frequency/high frequency ratio (P < .001).Conclusions:Lifetime physical activity and aerobic fitness may reduce obesity-related health risks by improving the cardiac autonomic function measured by HRV in obese workingage subjects. This research supports the role of lifetime physical activity in weight management strategies and interventions to reduce obesity-related health risks.


1991 ◽  
Vol 71 (3) ◽  
pp. 1143-1150 ◽  
Author(s):  
Y. Yamamoto ◽  
R. L. Hughson

Heart rate variability (HRV) spectra are typically analyzed for the components related to low- (less than 0.15 Hz) and high- (greater than 0.15 Hz) frequency variations. However, there are very-low-frequency components with periods up to hours in HRV signals, which might smear short-term spectra. We developed a method of spectral analysis suitable for selectively extracting very-low-frequency components, leaving intact the low- and high-frequency components of interest in HRV spectral analysis. Computer simulations showed that those low-frequency components were well characterized by fractional Brownian motions (FBMs). If the scale invariant, or self-similar, property of FBMs is considered a new time series (x′) was constructed by sampling only every other point (course graining) of the original time series (x). Evaluation of the cross-power spectra between these two (Sxx′) showed that the power of the FBM components was preserved, whereas that of the harmonic components vanished. Subtraction of magnitude of Sxx from the autopower spectra of the original sequence emphasized only the harmonic components. Application of this method to HRV spectral analyses indicated that it might enable one to observe more clearly the low- and high-frequency components characteristic of autonomic control of heart rate.


Author(s):  
Samruddhi Chintaman Vyas ◽  
A. Mooventhan ◽  
N. K. Manjunath

AbstractBackgroundThough hot arm and foot bath (HAFB) is widely used, a precise physiological response is not reported. Hence, the present study was conducted to evaluate the effect of HAFB on heart rate variability (HRV) and blood pressure (BP) in healthy volunteers.Materials and MethodsSixteen healthy male volunteers’ aged 23.81 ± 5.27 (mean ± standard deviation) years were recruited. All the subjects underwent only one session of HAFB (104-degree Fahrenheit) for the duration of 20 min. Assessments such as Electrocardiography and BP were taken before and after the intervention.ResultsResults of this study showed a significant reduction in systolic-BP (SBP), diastolic-BP (DBP), mean arterial pressure (MAP), the mean of the intervals between adjacent QRS complexes or the instantaneous heart rate (RR interval), the number of interval differences of successive NN intervals greater than 50 ms (NN50), the proportion derived by dividing NN50 by the total number of NN intervals (pNN50), and high frequency (HF) band of HRV along with a significant increase in heart rate (HR), low-frequency (LF) band of HRV and LF/HF ratio compared to its baseline.ConclusionsResults of this study suggest that 20 min of HAFB produce a significant increase in HR and a significant reduction in SBP, DBP, and MAP while producing parasympathetic withdrawal.


Neurology ◽  
2019 ◽  
Vol 93 (14 Supplement 1) ◽  
pp. S8.1-S8
Author(s):  
Mohammad Haider ◽  
Charles Wilber ◽  
Kaitlin Viera ◽  
Itai Bezherano ◽  
John Leddy

ObjectiveWe measured heart rate variability (HRV) during physiological stimuli in acutely concussed adolescents (CX) and after clinical recovery, and compared with healthy controls (HC).BackgroundConcussion is associated with autonomic dysfunction. Face Cooling (FC) triggers the trigeminal nerve to evoke transient increases in cardiac parasympathetic (PNS) activity.Design/Methods11 CX (14.8 ± 0.9 years, 6 male, 7 days since injury) and 11 HC (16.1 ± 1.1 years, 9 male) participated. We calculated mean heart rate (HR), standard deviation of root mean square (RMSSD, measure of PNS tone) and low-frequency to high-frequency power ratio (LF/HF ratio, measure of sympathetic [SNS] tone) at rest and 3-minute FC test.ResultsCX at Visit 1 and 2 had significantly lesser increase in HR (p = 0.02) and RMSSD (p = 0.038) than HC on FC.ConclusionsThese data show that acutely concussed participants have an attenuated PNS response to physiological stimuli which continues after clinical recovery.


2021 ◽  
pp. 431-437
Author(s):  
Kuo-Cheng Liu ◽  
Jong-Shyan Wang ◽  
Chien-Ya Hsu ◽  
Chia-Hao Liu ◽  
Carl PC Chen ◽  
...  

It is important to use short breaks to accelerate post-exercise recovery in sports. Previous studies have revealed that vibration can reduce post-exercise muscle soreness. However, there is still high heterogeneity in the effects of vibration on cardiovascular autonomic activities, and most studies to date have focused on high-frequency vibration. This study aimed to investigate the effect of low-frequency lower-body vibration (LBV) on post-exercise changes in heart rate variability and peripheral arterial tone. Ten men and 9 women aged 20 to 25 were recruited for this study. Each subject visited the testing room three times with at least 2 days in between. Each time, the subject received one of the three different vibration frequencies (0, 5, and 15 Hz) in a random order in the sitting position for 10 minutes. LBV was performed immediately after a static standing (control) test and 3-min-step test. Heart rate variability and digital volume pulse wave were recorded during the vibration phase (V1: vibration 0-5 minutes; V2: 6-10 minutes) and the recovery phase (Rc1: recovery phase 11-15 minutes; Rc2: 16-20 minutes). The result of digital pulse wave analysis showed that the reflection index (RI) under 15 Hz decreased during V1. Heart rate of the 15-Hz group also decreased during Rc1 and Rc2. According to the analysis of heart rate variability, low-frequency power/high-frequency power (LF/HF) decreased and normalized high-frequency power (nHF) increased during V2, Rc1 and Rc2 under 15 Hz and, during Rc2 under 5 Hz vibration. This study confirmed that the application of low-frequency LBV after exercise can reduce peripheral vascular tone, accelerate heart rate recovery, decrease cardiac sympathetic nerve activity, and promote parasympathetic nerve activity. The effect was more pronounced at 15 Hz than at 5 Hz. The findings provide a method to accelerate cardiovascular autonomic recovery after exercise.


2020 ◽  
Author(s):  
Natasa Reljin ◽  
Hugo F. Posada-Quintero ◽  
Caitlin Eaton-Robb ◽  
Sophia Binici ◽  
Emily Ensom ◽  
...  

BACKGROUND Accumulation of excess body fluid and autonomic dysregulation are clinically important characteristics of acute decompensated heart failure. We hypothesized that transthoracic bioimpedance, a noninvasive, simple method for measuring fluid retention in lungs, and heart rate variability, an assessment of autonomic function, can be used for detection of fluid accumulation in patients with acute decompensated heart failure. OBJECTIVE We aimed to evaluate the performance of transthoracic bioimpedance and heart rate variability parameters obtained using a fluid accumulation vest with carbon black–polydimethylsiloxane dry electrodes in a prospective clinical study (System for Heart Failure Identification Using an External Lung Fluid Device; SHIELD). METHODS We computed 15 parameters: 8 were calculated from the model to fit Cole-Cole plots from transthoracic bioimpedance measurements (extracellular, intracellular, intracellular-extracellular difference, and intracellular-extracellular parallel circuit resistances as well as fitting error, resonance frequency, tissue heterogeneity, and cellular membrane capacitance), and 7 were based on linear (mean heart rate, low-frequency components of heart rate variability, high-frequency components of heart rate variability, normalized low-frequency components of heart rate variability, normalized high-frequency components of heart rate variability) and nonlinear (principal dynamic mode index of sympathetic function, and principal dynamic mode index of parasympathetic function) analysis of heart rate variability. We compared the values of these parameters between 3 participant data sets: control (n=32, patients who did not have heart failure), baseline (n=23, patients with acute decompensated heart failure taken at the time of admittance to the hospital), and discharge (n=17, patients with acute decompensated heart failure taken at the time of discharge from hospital). We used several machine learning approaches to classify participants with fluid accumulation (baseline) and without fluid accumulation (control and discharge), termed <i>with fluid and without fluid</i> groups, respectively. RESULTS Among the 15 parameters, 3 transthoracic bioimpedance (extracellular resistance, R<sub>0</sub>; difference in extracellular-intracellular resistance, R<sub>0</sub> – R<sub>∞</sub>, and tissue heterogeneity, α) and 3 heart rate variability (high-frequency, normalized low-frequency, and normalized high-frequency components) parameters were found to be the most discriminatory between groups (patients with and patients without heart failure). R<sub>0</sub> and R<sub>0</sub> – R<sub>∞</sub> had significantly lower values for patients with heart failure than for those without heart failure (R<sub>0</sub>: <i>P</i>=.006; R<sub>0</sub> – R<sub>∞</sub>: <i>P</i>=.001), indicating that a higher volume of fluids accumulated in the lungs of patients with heart failure. A cubic support vector machine model using the 5 parameters achieved an accuracy of 92% for with fluid and without fluid group classification. The transthoracic bioimpedance parameters were related to intra- and extracellular fluid, whereas the heart rate variability parameters were mostly related to sympathetic activation. CONCLUSIONS This is useful, for instance, for an in-home diagnostic wearable to detect fluid accumulation. Results suggest that fluid accumulation, and subsequently acute decompensated heart failure detection, could be performed using transthoracic bioimpedance and heart rate variability measurements acquired with a wearable vest.


10.2196/18715 ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. e18715
Author(s):  
Natasa Reljin ◽  
Hugo F Posada-Quintero ◽  
Caitlin Eaton-Robb ◽  
Sophia Binici ◽  
Emily Ensom ◽  
...  

Background Accumulation of excess body fluid and autonomic dysregulation are clinically important characteristics of acute decompensated heart failure. We hypothesized that transthoracic bioimpedance, a noninvasive, simple method for measuring fluid retention in lungs, and heart rate variability, an assessment of autonomic function, can be used for detection of fluid accumulation in patients with acute decompensated heart failure. Objective We aimed to evaluate the performance of transthoracic bioimpedance and heart rate variability parameters obtained using a fluid accumulation vest with carbon black–polydimethylsiloxane dry electrodes in a prospective clinical study (System for Heart Failure Identification Using an External Lung Fluid Device; SHIELD). Methods We computed 15 parameters: 8 were calculated from the model to fit Cole-Cole plots from transthoracic bioimpedance measurements (extracellular, intracellular, intracellular-extracellular difference, and intracellular-extracellular parallel circuit resistances as well as fitting error, resonance frequency, tissue heterogeneity, and cellular membrane capacitance), and 7 were based on linear (mean heart rate, low-frequency components of heart rate variability, high-frequency components of heart rate variability, normalized low-frequency components of heart rate variability, normalized high-frequency components of heart rate variability) and nonlinear (principal dynamic mode index of sympathetic function, and principal dynamic mode index of parasympathetic function) analysis of heart rate variability. We compared the values of these parameters between 3 participant data sets: control (n=32, patients who did not have heart failure), baseline (n=23, patients with acute decompensated heart failure taken at the time of admittance to the hospital), and discharge (n=17, patients with acute decompensated heart failure taken at the time of discharge from hospital). We used several machine learning approaches to classify participants with fluid accumulation (baseline) and without fluid accumulation (control and discharge), termed with fluid and without fluid groups, respectively. Results Among the 15 parameters, 3 transthoracic bioimpedance (extracellular resistance, R0; difference in extracellular-intracellular resistance, R0 – R∞, and tissue heterogeneity, α) and 3 heart rate variability (high-frequency, normalized low-frequency, and normalized high-frequency components) parameters were found to be the most discriminatory between groups (patients with and patients without heart failure). R0 and R0 – R∞ had significantly lower values for patients with heart failure than for those without heart failure (R0: P=.006; R0 – R∞: P=.001), indicating that a higher volume of fluids accumulated in the lungs of patients with heart failure. A cubic support vector machine model using the 5 parameters achieved an accuracy of 92% for with fluid and without fluid group classification. The transthoracic bioimpedance parameters were related to intra- and extracellular fluid, whereas the heart rate variability parameters were mostly related to sympathetic activation. Conclusions This is useful, for instance, for an in-home diagnostic wearable to detect fluid accumulation. Results suggest that fluid accumulation, and subsequently acute decompensated heart failure detection, could be performed using transthoracic bioimpedance and heart rate variability measurements acquired with a wearable vest.


Sign in / Sign up

Export Citation Format

Share Document