The Role of GLP-1 7–36 in Control of Insulin Secretion Investigated Using the Receptor Antagonist, Exendin (9–39)

1995 ◽  
Vol 89 (s33) ◽  
pp. 2P-2P
Author(s):  
Zhili Wang ◽  
Renming Wang ◽  
Ali A. Owji ◽  
David M. Smith ◽  
Mohammad A. Ghatei ◽  
...  
Diabetes ◽  
1978 ◽  
Vol 27 (5) ◽  
pp. 550-553 ◽  
Author(s):  
N. Hiatt ◽  
M. B. Davidson ◽  
L. W. Chapman ◽  
J. A. Sheinkopf

Diabetes ◽  
1995 ◽  
Vol 44 (5) ◽  
pp. 565-571 ◽  
Author(s):  
H. Houwing ◽  
K. M. Frankel ◽  
J. H. Strubbe ◽  
P. T. van Suylichem ◽  
A. B. Steffens

1996 ◽  
Vol 76 (5) ◽  
pp. 3126-3135 ◽  
Author(s):  
N. A. Breakwell ◽  
M. J. Rowan ◽  
R. Anwyl

1. We reexamined the important areas of conflict in (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid [(1S,3R)-ACPD]-induced potentiation of the field excitatory postsynaptic potential (EPSP) and, for the first time, investigated the role of mGluRs in EPSP-spike (E-S) coupling. 2. (1S,3R)-ACPD (10 microM) bath applied for 20 min consistently induced a long-lasting potentiation of the dendritic EPSP in area CA1 of submerged rat hippocampal slices, which was considerably faster in onset than described previously. 3. This effect was not associated with any change in presynaptic fiber volley but was dependent on both an intact CA3 connection, because removal of area CA3 blocked (1S,3R)-ACPD-induced potentiation, and also on functional N-methyl-D-aspartate (NMDA) receptors, because (1S,3R)-ACPD-induced potentiation was blocked by inclusion of the NMDA receptor antagonist D(-)-2-amino-5-phosphonopentanoic acid (AP5; 50 microM). 4. (1S,3R)-ACPD induced a long-lasting potentiation of the population spike (PS) amplitude that was consistently larger than that of the EPSP measured in the cell body area. This EPSP-PS (E-S) potentiation was blocked by inclusion of the gamma-aminobuturic acid-A (GABAA) receptor antagonist, picrotoxin (50 microM). 5. E-S potentiation induced by high-frequency stimulation (HFS), which was of the same magnitude as that induced by (1S,3R)-ACPD, was blocked by the mGluR-selective antagonist (+)-alpha-methyl-4-carboxyphenylglycine (+MCPG; 250 microM). +MCPG also blocked HFS-induced long-term potentiation (LTP) of the EPSP measured in the cell body. 6. These results suggest that (1S,3R)-ACPD-induced potentiation is NMDA receptor dependent, contrary to some previous findings, and provide further evidence that both synaptic and E-S potentiation induced by (1S,3R)-ACPD share common mechanisms of expression with HFS-induced LTP. The data emphasize the important role of mGluRs in induction of EPSP LTP and E-S potentiation.


Metabolites ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 355
Author(s):  
Ingo Rustenbeck ◽  
Torben Schulze ◽  
Mai Morsi ◽  
Mohammed Alshafei ◽  
Uwe Panten

The pancreatic beta-cell transduces the availability of nutrients into the secretion of insulin. While this process is extensively modified by hormones and neurotransmitters, it is the availability of nutrients, above all glucose, which sets the process of insulin synthesis and secretion in motion. The central role of the mitochondria in this process was identified decades ago, but how changes in mitochondrial activity are coupled to the exocytosis of insulin granules is still incompletely understood. The identification of ATP-sensitive K+-channels provided the link between the level of adenine nucleotides and the electrical activity of the beta cell, but the depolarization-induced Ca2+-influx into the beta cells, although necessary for stimulated secretion, is not sufficient to generate the secretion pattern as produced by glucose and other nutrient secretagogues. The metabolic amplification of insulin secretion is thus the sequence of events that enables the secretory response to a nutrient secretagogue to exceed the secretory response to a purely depolarizing stimulus and is thus of prime importance. Since the cataplerotic export of mitochondrial metabolites is involved in this signaling, an orienting overview on the topic of nutrient secretagogues beyond glucose is included. Their judicious use may help to define better the nature of the signals and their mechanism of action.


2012 ◽  
Vol 216 (1) ◽  
pp. 21-29 ◽  
Author(s):  
Olivier Le Bacquer ◽  
Gurvan Queniat ◽  
Valery Gmyr ◽  
Julie Kerr-Conte ◽  
Bruno Lefebvre ◽  
...  

Regulated associated protein of mTOR (Raptor) and rapamycin-insensitive companion of mTOR (rictor) are two proteins that delineate two different mTOR complexes, mTORC1 and mTORC2 respectively. Recent studies demonstrated the role of rictor in the development and function of β-cells. mTORC1 has long been known to impact β-cell function and development. However, most of the studies evaluating its role used either drug treatment (i.e. rapamycin) or modification of expression of proteins known to modulate its activity, and the direct role of raptor in insulin secretion is unclear. In this study, using siRNA, we investigated the role of raptor and rictor in insulin secretion and production in INS-1 cells and the possible cross talk between their respective complexes, mTORC1 and mTORC2. Reduced expression of raptor is associated with increased glucose-stimulated insulin secretion and intracellular insulin content. Downregulation of rictor expression leads to impaired insulin secretion without affecting insulin content and is able to correct the increased insulin secretion mediated by raptor siRNA. Using dominant-negative or constitutively active forms of Akt, we demonstrate that the effect of both raptor and rictor is mediated through alteration of Akt signaling. Our finding shed new light on the mechanism of control of insulin secretion and production by the mTOR, and they provide evidence for antagonistic effect of raptor and rictor on insulin secretion in response to glucose by modulating the activity of Akt, whereas only raptor is able to control insulin biosynthesis.


2006 ◽  
Vol 26 (12) ◽  
pp. 4553-4563 ◽  
Author(s):  
Seon-Yong Yeom ◽  
Geun Hyang Kim ◽  
Chan Hee Kim ◽  
Heun Don Jung ◽  
So-Yeon Kim ◽  
...  

ABSTRACT Activating signal cointegrator 2 (ASC-2) is a transcriptional coactivator of many nuclear receptors (NRs) and other transcription factors and contains two NR-interacting LXXLL motifs (NR boxes). In the pancreas, ASC-2 is expressed only in the endocrine cells of the islets of Langerhans, but not in the exocrine cells. Thus, we examined the potential role of ASC-2 in insulin secretion from pancreatic β-cells. Overexpressed ASC-2 increased glucose-elicited insulin secretion, whereas insulin secretion was decreased in islets from ASC-2+/− mice. DN1 and DN2 are two dominant-negative fragments of ASC-2 that contain NR boxes 1 and 2, respectively, and block the interactions of cognate NRs with the endogenous ASC-2. Primary rat islets ectopically expressing DN1 or DN2 exhibited decreased insulin secretion. Furthermore, relative to the wild type, ASC-2+/− mice showed reduced islet mass and number, which correlated with increased apoptosis and decreased proliferation of ASC-2+/− islets. These results suggest that ASC-2 regulates insulin secretion and β-cell survival and that the regulatory role of ASC-2 in insulin secretion appears to involve, at least in part, its interaction with NRs via its two NR boxes.


Sign in / Sign up

Export Citation Format

Share Document