Vasoactive intestinal peptide down-regulates the intrahepatic renin–angiotensin system in the anaesthetized rat

2000 ◽  
Vol 99 (3) ◽  
pp. 201-206
Author(s):  
V. Z. C. YE ◽  
K. A. DUGGAN

Gastric sodium loading results in an increase in the portal venous concentration of vasoactive intestinal peptide (VIP) and down-regulation of both the intrahepatic and circulating renin–angiotensin systems. In the present study we sought to determine whether an increase in the concentration of VIP in the portal circulation might act to down-regulate the intrahepatic and/or circulating renin–angiotensin systems. Male Sprague–Dawley rats were infused intraportally with haemaccel vehicle or VIP in haemaccel for 60 min. Livers were harvested and blood was sampled. Angiotensin-converting enzyme (ACE) activity and angiotensinogen, angiotensin I, angiotensin II and renin concentrations were measured. VIP infusion decreased hepatic ACE activity (P < 0.05), the hepatic angiotensinogen concentration (P < 0.001) and the hepatic angiotensin I concentration (P < 0.05). The plasma angiotensinogen concentration and serum ACE activity were also decreased by intraportal VIP infusion (P < 0.05 for each). Plasma renin, angiotensin I and angiotensin II concentrations were unchanged by VIP infusion. We conclude that an increase in the portal venous VIP concentration down-regulates the intrahepatic renin–angiotensin system. These changes are similar to those reported after gastric sodium loading, and we suggest, therefore, that the increase in portal venous VIP that occurs after gastric sodium is the means by which the gastric sodium sensor signals the liver to effect these changes in the renin–angiotensin system.

2002 ◽  
Vol 30 (01) ◽  
pp. 87-93 ◽  
Author(s):  
Dae Gill Kang ◽  
Yong Gab Yun ◽  
Jang Hyun Ryoo ◽  
Ho Sub Lee

A study was designed to elucidate the mechanism of anti-hypertensive effects of Danshen in the two-kidney, one clip (2K1C) Goldblatt renovascular hypertensive model, which is the renin-angiotensin system (RAS)-dependent hypertensive model. We investigated the effects of water extracts of Danshen on the angiotensin converting enzyme (ACE) activities, systolic blood pressure (SBP), and hormone levels in the plasma of 2K1C rats. ACE activity was inhibited by the addition of Danshen extract in a dose-dependent manner. SBP was decreased significantly after administration of Danshen extract in 2K1C, whereas plasma renin activity (PRA) was not changed. The plasma concentration of aldosterone (PAC) was decreased significantly in 2K1C group administered with Danshen extract, whereas the plasma concentration of ANP was increased by administration of Danshen extract for three weeks. These results suggest that Danshen has an anti-hypertensive effect through the inhibition of ACE, an essential regulatory enzyme of RAS.


2004 ◽  
Vol 287 (3) ◽  
pp. F452-F459 ◽  
Author(s):  
Albert Quan ◽  
Sumana Chakravarty ◽  
Jian-Kang Chen ◽  
Jian-Chun Chen ◽  
Samer Loleh ◽  
...  

The proximal tubule contains an autonomous renin-angiotensin system that regulates transport independently of circulating angiotensin II. Androgens are known to increase expression of angiotensinogen, but the effect of androgens on proximal tubule transport is unknown. In this in vivo microperfusion study, we examined the effect of androgens on proximal tubule transport. The volume reabsorptive rate in Sprague-Dawley rats given dihydrotestosterone (DHT) injections was significantly higher than in control rats given vehicle injections (4.57 ± 0.31 vs. 3.31 ± 0.23 nl·min−1·mm−1, P < 0.01). Luminally perfusing with either enalaprilat (10−4 M) to inhibit production of angiotensin II or losartan (10−8 M) to block the angiotensin receptor decreased the proximal tubule volume reabsorptive rate in DHT-treated rats to a significantly greater degree than in control vehicle-injected rats. The renal expression of angiotensinogen was shown to be higher in the DHT-treated animals, using Northern blot analysis. The expression of angiotensin receptors, determined by specific binding of angiotensin II, was not different in the two groups of animals. Brush-border membrane protein abundance of the Na/H exchanger, a membrane transport protein under angiotensin II regulation, was also higher in DHT-treated rats vs. control rats. Rats that received DHT had higher blood pressures than the control rats but had no change in their glomerular filtration rate. In addition, serum angiotensin II levels were lower in DHT-treated vs. control rats. These results suggest that androgens may directly upregulate the proximal tubule renin-angiotensin system, increase the volume reabsorptive rate, and thereby increase extracellular volume and blood pressure and secondarily decrease serum angiotensin II levels.


2021 ◽  
Author(s):  
Kevin Burns ◽  
Matthew Cheng ◽  
Todd Lee ◽  
Allison McGeer ◽  
David Sweet ◽  
...  

Abstract SARS-CoV-2 enters cells by binding to angiotensin-converting enzyme 2 (ACE2), and COVID-19 infection may therefore induce changes in the renin-angiotensin system (RAS). To determine the effects of COVID-19 on plasma RAS components, we measured plasma ACE, ACE2, and angiotensins I, (1-7), and II in 46 adults with COVID-19 at hospital admission and on days 2, 4, 7 and 14, compared to 50 blood donors (controls). We compared survivors vs. non-survivors, males vs. females, ventilated vs. not ventilated, and angiotensin receptor blocker (ARB) and angiotensin-converting enzyme (ACE) inhibitor-exposed vs. not exposed. At admission, COVID-19 patients had higher plasma levels of ACE (p=0.012), ACE2 (p=0.001) and angiotensin-(1-7) (p<0.001) than controls. Plasma ACE and ACE2 remained elevated for 14 days in COVID-19 patients, while plasma angiotensin-(1-7) decreased after 7 days. In adjusted analyses, plasma ACE was higher in males vs. females (p=0.042), and plasma angiotensin I was significantly lower in ventilated vs. non-ventilated patients (p=0.001). In summary, plasma ACE and ACE2 are increased for at least 14 days in patients with COVID-19 infection. Angiotensin-(1-7) levels are also elevated, but decline after 7 days. The results indicate dysregulation of the RAS with COVID-19, with increased circulating ACE2 throughout the course of infection.Clinical Trial Registration: https://clinicaltrials.gov/ Unique Identifier: NCT04510623


1999 ◽  
Vol 160 (1) ◽  
pp. 43-47 ◽  
Author(s):  
H Kobori ◽  
A Ichihara ◽  
Y Miyashita ◽  
M Hayashi ◽  
T Saruta

We have reported previously that thyroid hormone activates the circulating and tissue renin-angiotensin systems without involving the sympathetic nervous system, which contributes to cardiac hypertrophy in hyperthyroidism. This study examined whether the circulating or tissue renin-angiotensin system plays the principal role in hyperthyroidism-induced cardiac hypertrophy. The circulating renin-angiotensin system in Sprague-Dawley rats was fixed by chronic angiotensin II infusion (40 ng/min, 28 days) via mini-osmotic pumps. Daily i.p. injection of thyroxine (0.1 mg/kg per day, 28 days) was used to mimic hyperthyroidism. Serum free tri-iodothyronine, plasma renin activity, plasma angiotensin II, cardiac renin and cardiac angiotensin II were measured with RIAs. The cardiac expression of renin mRNA was evaluated by semiquantitative reverse transcriptase-polymerase chain reaction. Plasma renin activity and plasma angiotensin II were kept constant in the angiotensin II and angiotensin II+thyroxine groups (0.12+/-0.03 and 0.15+/-0.03 microgram/h per liter, 126+/-5 and 130+/-5 ng/l respectively) (means+/-s.e.m.). Despite stabilization of the circulating renin-angiotensin system, thyroid hormone induced cardiac hypertrophy (5.0+/-0.5 vs 3.5+/-0.1 mg/g) in conjunction with the increases in cardiac expression of renin mRNA, cardiac renin and cardiac angiotensin II (74+/-2 vs 48+/-2%, 6.5+/-0.8 vs 3.8+/-0.4 ng/h per g, 231+/-30 vs 149+/-2 pg/g respectively). These results indicate that the local renin-angiotensin system plays the primary role in the development of hyperthyroidism-induced cardiac hypertrophy.


1994 ◽  
Vol 131 (6) ◽  
pp. 582-588 ◽  
Author(s):  
Gen Yasuda ◽  
Hiroshi Shionoiri ◽  
Satoshi Umemura ◽  
Izumi Takasaki ◽  
Masao Ishii

Yasuda G, Shionoiri H, Umemura S, Takasaki I, Ishii M. Exaggerated blood pressure response to angiotensin II in patients with Cushing's syndrome due to adrenocortical adenoma. Eur J Endocrinol 1994:131:582–8 ISSN 0804–4643 We studied the roles played by the renin-angiotensin system in inducing hypertension in nine patients with Cushing's syndrome (CS) resulting from adrenocortical adenoma, and compared them with those in patients with primary aldosteronism (PA), renovascular hypertension (RVH) and essential hypertension (EH). In the CS group, each parameter, including serum potassium, plasma renin activity, plasma aldosterone, deoxycorticosterone and corticosterone concentrations, is within the normal range. However, plasma renin activity in the CS group was lower than that in the RVH group but higher than that in the PA group, and plasma aldosterone concentration was lower than that in each RVH or PA group. These findings indicated that the CS group had a different type of hypertension from that in either RVH or PA, in which the renin angiotensin system or mineralocorticoids play an important role in hypertension. Meanwhile, captopril (50 mg) administration either with or without indomethacin pretreatment decreased the mean blood pressure in the CS group, although captopril failed to change it in the PA group or in normal subjects. Furthermore, the pressor response to exogenous angiotensin II in the CS group was higher than that in the RVH or EH group, but was not different from that in the PA group. Thus, the hypertension in patients with CS due to adrenocortical adenoma appears to be mediated through a change in the renin-angiotensin system in the form of exaggerated pressor responses to angiotensin II. G Yasuda, Second Department of Internal Medicine, Yokohama City University School of Medicine, 3-46 Urafune, Minami, Yokohama 232, Japan


1978 ◽  
Vol 55 (s4) ◽  
pp. 319s-321s ◽  
Author(s):  
H. Ibsen ◽  
A. Leth ◽  
H. Hollnagel ◽  
A. M. Kappelgaard ◽  
M. Damkjaer Nielsen ◽  
...  

1. Twenty-five patients with mild essential hypertension, identified during a survey of a population born in 1936, were investigated. 2. Basal and post-frusemide values for plasma renin concentration and plasma angiotensin II concentration did not differ markedly from reference values in 25 40-year-old control subjects. In the untreated, sodium replete state saralasin infusion (5·4 nmol min−1 kg−1) produced an increase in mean arterial pressure in the patient group as a whole. 3. Twenty-one patients were treated with hydrochlorothiazide, mean dose 75 mg/day for 3 months. Pre-treatment, frusemide-stimulated plasma renin concentration and plasma angiotensin II, and values during thiazide treatment were higher in ‘non-responders’ (n = 10) to hydrochlorothiazide treatment than in ‘thiazide-responders’ (n = 11). During thiazide therapy, angiotensin II blockade induced a clear-cut decrease in mean arterial pressure in all ‘thiazide-nonresponders’ whereas only four out of 11 ‘thiazide-responders’ showed a borderline decline in mean arterial pressure. 4. The functional significance of the renin—angiotensin system in mild essential hypertension emerges only after thiazide treatment. Thiazide-induced stimulation of the renin—angiotensin system counter-balanced the hypotensive effect of thiazide in some 40% of the treated patients. Thus the responsiveness of the renin—angiotensin system determined the blood pressure response to thiazide treatment.


1990 ◽  
Vol 259 (2) ◽  
pp. H324-H332 ◽  
Author(s):  
K. M. Baker ◽  
M. I. Chernin ◽  
S. K. Wixson ◽  
J. F. Aceto

We have recently shown that the octapeptide angiotensin II is a potent stimulus of protein synthesis and growth in cultured cardiomyocytes. The present study was performed to determine if the renin-angiotensin system was involved in regulating cardiac cell growth in vivo. The pressure-overload cardiac hypertrophy model that develops in abdominal aorta-constricted rats was studied. At 7 and 15 days after abdominal aorta constriction, rats developed significant left ventricular hypertrophy. The increase in left ventricular mass was completely prevented in animals fed the angiotensin-converting enzyme inhibitor, enalapril maleate (0.2 mg/ml) in their drinking water. Cardiac afterload was the same in both groups of animals in that carotid artery pressures were not different in conscious awake aortic-constricted animals receiving and not receiving enalapril. These data suggest a direct growth effect of angiotensin II on the left ventricle and indicate a role for the renin-angiotensin system in the cardiac hypertrophy that develops in response to pressure overload. The presence and chamber localization of angiotensinogen mRNA was determined using Northern hybridization and S1 nuclease mapping analysis. Angiotensinogen mRNA, as determined by dot-blot hybridization analysis, was significantly increased in hypertrophied left ventricles at both 7 and 15 days after the surgery, when compared with sham-operated controls. The activity of the circulating renin-angiotensin system, as indexed by plasma renin activity was increased at 1 day following surgery [6.0 +/- 2.0 ng.ml-1.h-1 angiotensin I (control) vs. 41.8 +/- 10.9 ng.ml-1.h-1 angiotensin I (experimental)], but returned to control values by day 3 postoperatively.(ABSTRACT TRUNCATED AT 250 WORDS)


1975 ◽  
Vol 228 (2) ◽  
pp. 613-617 ◽  
Author(s):  
LR Krakoff ◽  
R Selvadurai ◽  
E Sutter

The effect of methylprednisolone or deoxycorticosterone upon systemic arterial blood pressure and components of the renin-angiotensin system was studied in the rat. Rats maintained on regular diets given methylprednisolone suspension 20 mg/kg body wt demonstrated a significant increase in arterial pressure of + 37 plus or minus 5 mmHg, mean plus or minus SE, over a 2-wk period, whereas those treated with DOC and untreated controls showed no significant change. On normal diets, plasma renin concentration (PRC) of methylprednisolone-treated rats was significantly higher than that of DOC-treated rats. Methylprednisolone treatment also resulted in a significant elevation of plasma renin substrate concentration (PRS). Calculated plasma renin activity (PRA) was highest in methylprednisolone-treated rats, significantly above that of the DOC and no-steroid groups. NaCl supplementation resulted in a significant fall in PRC and PRA in all three groups; however, PRS remained significantly above normal in the methylprednisolone-treated rats. The pressor effect of angiotensin II was slightly increased in methylprednisolone-treated rats. Infusion of [Sar1,Ala8]angiotensin II (P-113) in methylprednisolone-treated rats resulted in a significant fall in diastolic arterial pressure. The results imply that methylprednisolone hypertension in the rat may be in part angiotensin dependent.


2017 ◽  
Vol 18 (1) ◽  
pp. 147032031769884 ◽  
Author(s):  
Mirella Coppo ◽  
Manuela Bandinelli ◽  
Marco Chiostri ◽  
Loredana Poggesi ◽  
Maria Boddi

Introduction: Unstable angina is associated with an acute systemic inflammatory reaction and circulating T lymphocytes are activated. We investigated whether in unstable angina with marked immune system activation a selective upregulation of the circulating T-cell renin–angiotensin system, modulated by angiotensin II, could occur. Methods: We studied 13 unstable angina patients, 10 patients with stable angina and 10 healthy subjects. After T-lymphocyte isolation, mRNAs for angiotensin-converting enzyme (ACE) and angiotensin type 1 receptor (AT1-R) were quantified at baseline and after angiotensin II stimulation. ACE activity in cell pellet and supernatant and angiotensin II cell content were measured. Results: Plasma renin activity was similar in controls, stable and unstable angina patients. At baseline ACE and AT1-R mRNA levels were higher ( P<0.05) in T cells from unstable angina patients than in T cells from stable angina patients and controls, and further increased after angiotensin II addition to cultured T cells. ACE activity of unstable angina T cells was significantly higher than that of T cells from controls and stable angina patients. Only in T cells from unstable angina patients did angiotensin II stimulation cause the almost complete release of ACE activity in the supernatant. Conclusions: The circulating T-cell-based renin–angiotensin system from unstable angina patients was selectively upregulated. In vivo unstable angina T cells could locally increase angiotensin II concentration in tissues where they migrate independently of the circulating renin–angiotensin system.


Sign in / Sign up

Export Citation Format

Share Document