Tumour necrosis factor-α gene expression and production in human umbilical arterial endothelial cells

2000 ◽  
Vol 98 (4) ◽  
pp. 461 ◽  
Author(s):  
Thomas NEUHAUS ◽  
Gudrun TOTZKE ◽  
Elisabeth GRUENEWALD ◽  
Hans-Peter JUESTEN ◽  
Agapios SACHINIDIS ◽  
...  
2000 ◽  
Vol 98 (4) ◽  
pp. 461-470 ◽  
Author(s):  
Thomas NEUHAUS ◽  
Gudrun TOTZKE ◽  
Elisabeth GRUENEWALD ◽  
Hans-Peter JUESTEN ◽  
Agapios SACHINIDIS ◽  
...  

Endothelial cells act as an interface between the blood and tissues, and are known to be involved in inflammatory processes. These cells are responsive to and produce different cytokines. Tumour necrosis factor-α (TNF-α) not only is one of the most important inflammatory peptides, but also can be induced by lipopolysaccharide (LPS). The focus of the present study was on TNF-α gene expression and production in human umbilical arterial endothelial cells (HUAEC), including the kinetics of this process. Interleukin-1α (IL-1α), LPS and TNF-α, which are all known to be elevated in septic shock, were used as stimulators at concentrations commonly found in patients with sepsis. Through the use of reverse transcriptase/PCR, immunohistochemical reactions and ELISA techniques, we showed that, in HUAEC, all three stimuli were able to induce gene expression and production of TNF-α. Furthermore, this induction by IL-1α, LPS and TNF-α occurred in a time- and concentration-dependent manner in these cells. TNF-α expression and production was induced by all three agents at concentrations commonly found in patients with sepsis. TNF-α mRNA was observed within 30 min regardless of the stimulus used, but the levels peaked at different times. Since it is well established that TNF-α is able to induce the synthesis of IL-1α in endothelial cells and, as shown in the present study, TNF-α and IL-1α are themselves able to induce the synthesis of TNF-α in endothelial cells, an autocrine potentiation of cytokine release in sepsis can be proposed. This situation could lead to a locally acting ‘vicious cycle’ which, when considered in addition to the known ability of TNF-α to induce apoptosis, could mean that various organs will be damaged, a condition associated with sepsis. Thus these results provide further evidence for the important role played by the endothelium in inflammation.


2000 ◽  
Vol 267 (14) ◽  
pp. 4325-4333 ◽  
Author(s):  
Rebeca López-Marure ◽  
José L. Ventura ◽  
Luis Sánchez ◽  
Luis F. Montaño ◽  
Alejandro Zentella

2005 ◽  
Vol 390 (1) ◽  
pp. 317-324 ◽  
Author(s):  
Nobuyuki Marui ◽  
Russell M. Medford ◽  
Mushtaq Ahmad

In vascular endothelial cells, cytokines induce genes that are expressed in inflammatory lesions partly through the activation of transcription factor NF-κB (nuclear factor-κB). Among the members of the NF-κB/rel protein family, homodimers of the RelA subunit of NF-κB can also function as strong transactivators when expressed in cells. However, the functional role of endogenous RelA homodimers has not been clearly elucidated. We investigated whether RelA homodimers are induced in cytokine-treated vascular endothelial cells. Gel mobility-shift and supershift assays revealed that a cytokine TNFα (tumour necrosis factor α) activated both NF-κB1/RelA heterodimers and RelA homodimers that bound to a canonical κB sequence, IgκB (immunoglobulin κB), in SV40 (simian virus 40) immortalized HMEC-1 (human dermal microvascular endothelial cell line 1). In HMEC-1 and HUVEC (human umbilical-vein endothelial cells), TNFα also induced RelA homodimers that bound to the sequence 65-2κB, which specifically binds to RelA homodimers but not to NF-κB1/RelA heterodimers in vitro. Deoxycholic acid, a detergent that can dissociate the NF-κB–IκB complex (where IκB stands for inhibitory κB), induced the binding of the RelA homodimers to 65-2κB from the cytosolic fraction of resting HMEC-1. Furthermore, TNFα induced the transcriptional activity of a reporter gene that was driven by 65-2κB in HMEC-1. These results suggest that in addition to NF-κB1/RelA heterodimers, TNFα also induces RelA homodimers that are functionally active. Thus RelA homodimers may actively participate in cytokine regulation of gene expression in human vascular endothelial cells.


Sign in / Sign up

Export Citation Format

Share Document