Imbalance of gut microbiome and intestinal epithelial barrier dysfunction in cardiovascular disease

2018 ◽  
Vol 132 (8) ◽  
pp. 901-904 ◽  
Author(s):  
Judith N. Lezutekong ◽  
Anish Nikhanj ◽  
Gavin Y. Oudit

The main function of the intestinal barrier is to regulate the absorption of nutrients, electrolytes, and water from the lumen into circulation and to prevent the entry of pathogenic microorganisms and toxic luminal substances. To maintain this function, an ideal microbiota balance is required and gut microbiota are critical for the intestinal epithelial barrier dysfunction and for the maintenance of physiological homeostasis. There is a demonstrable link between dysbiosis and intestinal dysfunction and diseases such as diabetes, obesity, and cardiovascular disease. However, links amongst gut pathology, microbial ecology, and blood pressure remain elusive. In a recent issue of Clinical Science (vol. 132, issue 6, 701-718), Kim et al. demonstrate a crucial link between gut microbiota and bacterial metabolites such as butyrate, gut leakiness, and hypertension.

2020 ◽  
Vol 11 (9) ◽  
pp. 8077-8088
Author(s):  
Zhenxia Xu ◽  
Wenchao Chen ◽  
Qianchun Deng ◽  
Qingde Huang ◽  
Xu Wang ◽  
...  

Intestinal epithelial barrier dysfunction with dysbiosis of gut microbiota contributes to the occurrence and acceleration of colitis.


2017 ◽  
Vol 8 (3) ◽  
pp. 1144-1151 ◽  
Author(s):  
Qianru Chen ◽  
Oliver Chen ◽  
Isabela M. Martins ◽  
Hu Hou ◽  
Xue Zhao ◽  
...  

Alaska pollock skin derived collagen peptides could be considered as dietary supplements for intestinal barrier function promotion and associated diseases.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Huan Lan ◽  
Lu-Ying Zhang ◽  
Wen He ◽  
Wan-Ying Li ◽  
Zhen Zeng ◽  
...  

The integrity and permeability of the intestinal epithelial barrier are important indicators of intestinal health. Impaired intestinal epithelial barrier function and increased intestinal permeability are closely linked to the onset and progression of various intestinal diseases. Sinapic acid (SA) is a phenolic acid that has anti-inflammatory, antihyperglycemic, and antioxidant activities; meanwhile, it is also effective in the protection of inflammatory bowel disease (IBD), but the specific mechanisms remain unclear. Here, we evaluated the anti-inflammatory of SA and investigated its potential therapeutic activity in LPS-induced intestinal epithelial barrier and tight junction (TJ) protein dysfunction. SA improved cell viability; attenuated epithelial permeability; restored the protein and mRNA expression of claudin-1, ZO-1, and occludin; and reversed the redistribution of the ZO-1 and claudin-1 proteins in LPS-treated Caco-2 cells. Moreover, SA reduced the inflammatory response by downregulating the activation of the TLR4/NF-κB pathway and attenuated LPS-induced intestinal barrier dysfunction by decreasing the activation of the MLCK/MLC pathway. This study demonstrated that SA has strong anti-inflammatory activity and can alleviate the occurrence of high intercellular permeability in Caco-2 cells exposed to LPS.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Linda Chia-Hui Yu

Intestinal epithelial barrier plays a critical role in the maintenance of gut homeostasis by limiting the penetration of luminal bacteria and dietary allergens, yet allowing antigen sampling for the generation of tolerance. Undigested proteins normally do not gain access to the lamina propria due to physical exclusion by tight junctions at the cell-cell contact sites and intracellular degradation by lysosomal enzymes in enterocytes. An intriguing question then arises: how do macromolecular food antigens cross the epithelial barrier? This review discusses the epithelial barrier dysfunction in sensitized intestine with special emphasis on the molecular mechanism of the enhanced transcytotic rates of allergens. The sensitization phase of allergy is characterized by antigen-induced cross-linking of IgE bound to high affinity FcεRI on mast cell surface, leading to anaphylactic responses. Recent studies have demonstrated that prior to mast cell activation, food allergens are transported in large quantity across the epithelium and are protected from lysosomal degradation by binding to cell surface IgE and low-affinity receptor CD23/FcεRII. Improved immunotherapies are currently under study including anti-IgE and anti-CD23 antibodies for the management of atopic disorders.


2018 ◽  
Vol 43 (5) ◽  
pp. 1516-1528 ◽  
Author(s):  
Shanshan Liang ◽  
Sixiu Liu ◽  
Hua Liu ◽  
Xin He ◽  
Lingshuang Sun ◽  
...  

PLoS ONE ◽  
2013 ◽  
Vol 8 (11) ◽  
pp. e81491 ◽  
Author(s):  
Ashleigh Hansen ◽  
Laurie Alston ◽  
Sarah E. Tulk ◽  
L. Patrick Schenck ◽  
Michael E. Grassie ◽  
...  

2013 ◽  
Vol 304 (5) ◽  
pp. G479-G489 ◽  
Author(s):  
Katherine R. Groschwitz ◽  
David Wu ◽  
Heather Osterfeld ◽  
Richard Ahrens ◽  
Simon P. Hogan

Mast cells regulate intestinal barrier function during disease and homeostasis. Secretion of the mast cell-specific serine protease chymase regulates homeostasis. In the present study, we employ in vitro model systems to delineate the molecular pathways involved in chymase-mediated intestinal epithelial barrier dysfunction. Chymase stimulation of intestinal epithelial (Caco-2 BBe) cell monolayers induced a significant reduction in transepithelial resistance, indicating decreased intestinal epithelial barrier function. The chymase-induced intestinal epithelial barrier dysfunction was characterized by chymase-induced protease-activated receptor (PAR)-2 activation and matrix metalloproteinase (MMP)-2 expression and activation. Consistent with this observation, in vitro analysis revealed chymase-induced PAR-2 activation and increased MAPK activity and MMP-2 expression. Pharmacological and small interfering RNA-mediated antagonism of PAR-2 and MMP-2 significantly attenuated chymase-stimulated barrier dysfunction. Additionally, the chymase/MMP-2-mediated intestinal epithelial dysfunction was associated with a significant reduction in the tight junction protein claudin-5, which was partially restored by MMP-2 inhibition. Finally, incubation of Caco-2 BBe cells with chymase-sufficient, but not chymase-deficient, bone marrow-derived mast cells decreased barrier function, which was attenuated by the chymase inhibitor chymostatin. Collectively, these results suggest that mast cell/chymase-mediated intestinal epithelial barrier function is mediated by PAR-2/MMP-2-dependent pathways.


Sign in / Sign up

Export Citation Format

Share Document