scholarly journals Central administration of TRV027 improves baroreflex sensitivity and vascular reactivity in spontaneously hypertensive rats

2018 ◽  
Vol 132 (14) ◽  
pp. 1513-1527 ◽  
Author(s):  
Alynne Carvalho-Galvão ◽  
Blessing Ogunlade ◽  
Jiaxi Xu ◽  
Cristiane R.A. Silva-Alves ◽  
Leônidas G. Mendes-Júnior ◽  
...  

TRV027 is a biased agonist for the Angiotensin (Ang)-II type 1 receptor (AT1R), able to recruit β-arrestin 2 independently of G-proteins activation. β-arrestin activation in the central nervous system (CNS) was suggested to oppose the effects of Ang-II. The present study evaluates the effect of central infusion of TRV027 on arterial pressure (AP), autonomic function, baroreflex sensitivity (BRS), and peripheral vascular reactivity. Spontaneously hypertensive (SH) and Wistar Kyoto (WKY) rats were treated with TRV027 for 14 days (20 ng/h) delivered to the lateral ventricle via osmotic minipumps. Mechanistic studies were performed in HEK293T cells co-transfected with AT1R and Ang converting enzyme type 2 (ACE2) treated with TRV027 (100 nM) or Ang-II (100 nM). TRV027 infusion in SH rats (SHR) reduced AP (~20 mmHg, P<0.05), sympathetic vasomotor activity (ΔMAP = −47.2 ± 2.8 compared with −64 ± 5.1 mmHg, P<0.05) and low-frequency (LF) oscillations of AP (1.7 ± 0.2 compared with 5.8 ± 0.4 mmHg, P<0.05) compared with the SHR control group. TRV027 also increased vagal tone, improved BRS, reduced the reactivity of mesenteric arteries to Ang-II and increased vascular sensitivity to phenylephrine (Phe), acetylcholine, (ACh), and sodium nitroprusside (SNP). In vitro, TRV027 prevented the Ang-II-induced up-regulation of ADAM17 and in contrast with Ang-II, had no effects on ACE2 activity and expression levels. Furthermore, TRV027 induced lesser interactions between AT1R and ACE2 compared with Ang-II. Together, these data suggest that due to its biased activity for the β-arrestin pathway, TRV027 has beneficial effects within the CNS on hypertension, autonomic and vascular function, possibly through preserving ACE2 compensatory activity in neurones.

Hypertension ◽  
2017 ◽  
Vol 70 (suppl_1) ◽  
Author(s):  
Livia L Camargo ◽  
Augusto C Montezano ◽  
Adam Harvey ◽  
Sofia Tsiropoulou ◽  
Katie Hood ◽  
...  

In hypertension, activation of NADPH oxidases (Noxs) is associated with oxidative stress and vascular dysfunction. The exact role of each isoform in hypertension-associated vascular injury is still unclear. We investigated the compartmentalization of Noxs in VSMC from resistance arteries of Wistar Kyoto (WKY) and spontaneously hypertensive rats (SHR). Expression of Nox1 and Nox4 was increased in SHR cells (96.6±28.7% and 48.2±21.2% vs WKY, p<0.05), as well as basal ROS levels measured by chemiluminescence (110.2±26.4% vs WKY, p<0.05) and amplex red (105.2±33.2% vs WKY, p<0.05). Phosphorylation of unfolded protein response activators, PERK and IRE1α, and expression of ER chaperone BiP were elevated in SHR cells (p<0.05 vs WKY), indicating activation of ER stress response. Immunoblotting after organelle fractionation demonstrated that Noxs are expressed in an organelle-specific manner, with Nox1, 2 and 4 present in plasma membrane, ER and nucleus, but not in mitochondria. In SHR cells, NoxA1ds (Nox1 inhibitor, 10μM) and GKT136901 (Nox1/4 inhibitor, 10μM) decreased AngII-induced ROS levels (p<0.001 vs Ctl). Additionally, mito-tempol (mitochondrial-targeted antioxidant, 50nM) and 4-PBA (ER stress inhibitor, 1mM) decreased basal ROS levels in SHR cells (p<0.05 vs Ctl). Furthermore, oxidation of the antioxidant enzymes Peroxiredoxins (Prx) was increased in SHRSP compared to WKY (2.51±0.14 vs 0.56±0.07, p<0.001). One-dimensional isoelectric focusing revealed that cytosolic Prx2 and mitochondrial Prx3 were more oxidized in SHRSP than WKY cells. Using a biotin-tagged dimedone-based probe (DCP-Bio) we identified oxidation of ER stress proteins BiP and IRE1. To investigate the effect of protein oxidation in vascular function, vascular reactivity was evaluated in isolated mesenteric arteries. Inhibition of general oxidation (DTT 1mM; Emax: 111.7±33.1) and peroxiredoxin (Conoidin A 10nM; Emax: 116.0±7.3) reduces vascular contraction in response to noradrenalin in WKY rats (Emax: 166.6±30.2; p<0.05). These findings suggest an important role for Nox1/4 in redox-dependent organelle dysfunction and post-translational modification of proteins, processes that may play an important role in vascular dysfunction in hypertension.


1996 ◽  
Vol 270 (1) ◽  
pp. H1-H6 ◽  
Author(s):  
A. S. Izzard ◽  
S. J. Bund ◽  
A. M. Heagerty

To investigate myogenic tone during the developmental and established phases of hypertension, segments of distal (6th order) mesenteric arteries from spontaneously hypertensive rats (SHR) at 5 and 20 wk were isolated and pressurized in vitro and compared with vessels from age-matched Wistar-Kyoto (WKY) control animals. At 5 wk, tone was significantly enhanced in the SHR. At 20 wk tone was no longer significantly increased over a wide pressure range, although arteries from the SHR were able to maintain diameter at all pressures studied, whereas vessels from the WKY exhibited forced distension at 180 and 200 mmHg. From the relative slope of the pressure-diameter relationship (myogenic index), no increase in peak myogenic responsiveness was observed in arteries from the SHR at either time point. Passive lumen diameters were significantly decreased in arteries from SHR at both time points. From the total and passive midwall circumference-tension relationships, total tension was observed at a reduced midwall circumference in the SHR, but increased absolute levels of total tension were not observed. The normalized midwall circumference-tension relationships in the two strains revealed increased total tension due to active tension development at a reduced normalized circumference at 5 wk in the SHR. At 20 wk the normalized midwall circumference-tension relationships in the two strains were identical. These results demonstrate that myogenic tone in mesenteric arteries is enhanced during the development of hypertension but not when it is established, except at high intraluminal pressures.


2006 ◽  
Vol 188 (3) ◽  
pp. 435-442 ◽  
Author(s):  
P W F Hadoke ◽  
R S Lindsay ◽  
J R Seckl ◽  
B R Walker ◽  
C J Kenyon

Excessive exposure to glucocorticoids during gestation reduces birth weight and induces permanent hypertension in adulthood. The mechanisms underlying this programmed elevation of blood pressure have not been established. We hypothesised that prenatal glucocorticoid exposure may lead to vascular dysfunction in adulthood. Pregnant rats received dexamethasone (Dex) (100 μg/kg, s.c.) or vehicle (control) daily throughout pregnancy. Blood pressure was elevated (students t-test, unpaired; P < 0.05) in adult female offspring (aged 12–16 weeks) of Dex-treated mothers (148.0 ± 3.6 mmHg, n=10) compared with the control group (138.0 ± 2.5 mmHg, n=8). Vascular responsiveness in aortae and mesenteric arteries was differentially affected by prenatal Dex: aortae were less responsive to angiotensin II, whereas mesenteric arteries were more responsive to norepinephrine, vasopressin and potassium (mesenteric arteries respond poorly to angiotensin II in vitro). Acetylcholine-mediated, endothelium-dependent relaxation was similar in both groups. Prenatal exposure to Dex had no effect on blood pressure or aldosterone response to acute (15 min, i.v.) infusion of angiotensin II (75 ng/kg per min). In contrast, chronic (2-week, s.c.) infusion of angiotensin II (100 ng/kg per min) produced a greater elevation (P < 0.05) of blood pressure in Dex-treated rats (150.0 ± 3.6 mmHg) than in controls (135.3 ± 5.4 mmHg), and aldosterone levels were higher in Dex-treated animals. There was no angiotensin II-induced medial hypertrophy/hyperplasia in mesenteric arteries from Dex-treated rats. These results indicate that vascular function is altered in a region-specific manner in rats with glucocorticoid-programmed hypertension. Despite a striking increase in mesenteric artery contraction in Dex-treated rats, in vivo studies suggest that abnormalities of the renin-angiotensin-aldosterone system, rather than enhanced vascular contractility, may be responsible for the elevation of blood pressure in these animals.


1984 ◽  
Vol 62 (1) ◽  
pp. 89-93 ◽  
Author(s):  
Suzanne Desjardins-Giasson ◽  
Jolanta Gutkowska ◽  
Raul Garcia ◽  
Jacques Genest

The release of prostaglandin E2 (PGE2) and 6-ketoprostaglandin F1α (6-keto-PGF1α), the stable metabolite of prostacyclin (PGI2), by the perfused mesenteric arteries of renal and spontaneously hypertensive rats (SHR) have been measured. Unstimulated mesenteric arteries from two-kidney one-clip hypertensive rats (2K-1C) released 1.6 times as much PGE2 and 2.7 times as much 6-keto-PGF1α as those of control rats. The release of PGE2 by mesenteric arteries from one-kidney one-clip hypertensive rats (1K-1C) was not significantly different from that of uninephrectomized normotensive rats, but the release of 6-keto-PGF1α was 3.5 times higher in the former than in the latter. Norepinephrine (NE) induced a dose-related increase in perfusion pressure, in PGE2, and 6-keto-PGF1α release in all four groups. However, its effect on the release of PGE2 was more pronounced in 2K-1C than in sham-operated rats. There was no difference between 1K-1C and the uninephrectomized group. The effect of NE on the release of 6-keto-PGF1α was significantly higher for both renal hypertensive groups. These results indicate that the release of PGE2 is more dependent on the loss of renal mass than on hypertension, while the reverse applies to the release of 6-keto-PGF1α. Unstimulated mesenteric arteries from SHR released less PGE2 and less 6-keto-PGF1α than those of Wistar–Kyoto normotensive rats (WKY), but the release was not significantly different from Wistar rats. Under NE stimulation, WKY mesenteric arteries showed almost no increase in release of PGs. Compared with those of Wistar rats, SHR mesenteric arteries showed a greater pressor response to NE, a lower PGE2 release, and the same release of 6-keto-PGF1α. These findings reveal the difficulty of selecting an appropriate control group in studies involving SHR. We concluded that in renal hypertensive rats the specific increase of PGI2 release by arterial tissue may represent an important adaptive mechanism to the elevated blood pressure. However, this mechanism seems not to be involved in SHR.


2012 ◽  
Vol 6 (1) ◽  
pp. 50-59 ◽  
Author(s):  
P Lemkens ◽  
GEM Boari ◽  
GE Fazzi ◽  
GMJ Janssen ◽  
JE Murphy-Ullrich ◽  
...  

We tested the hypotheses that TSP-1 participates in the initiation of remodeling of small muscular arteries in response to altered blood flow and that the N-terminal domain of TSP-1 (hepI) can reverse the pathological inward remodeling of resistance arteries from SHR. We measured (1) changes in gene/protein expression in MA of 6 week old WKY and SHR exposed to either increased (+ 100 %) or reduced blood flow (- 90 %) for 24-40 hours and (2) structural changes in MA of 12 week old SHR exposed for 3 days to hepI in organ culture. In both HF and LF of WKY, mRNA expression of eNOS, sGCα1 and PKG1β were significantly reduced (p < 0.05), whereas mRNA of TSP1 was markedly increased (p < 0.05). In MA of young SHR, similar results were obtained except that eNOS mRNA was not reduced in LF. Expression of TSP1 protein was significantly increased in LF of young WKY and SHR (p < 0.05). Exposure of MA of 12 week old SHR to hepI (1 µmol/L) resulted in a rapid lumen diameter increase (+ 12 ± 2% after 3 days) without alteration in vascular reactivity, distensibility, media surface area or cell number. These are the first observations of reduced gene expression of eNOS/sGC/PKG and increased expression of TSP1 at the initiation of arterial remodeling in young WKY and SHR, irrespective of its outward or inward outcome. Furthermore, a fragment of TSP-1 rapidly and directly reversed pathological inward arterial remodeling of SHR in vitro.


1982 ◽  
Vol 243 (3) ◽  
pp. H365-H370 ◽  
Author(s):  
G. L. Wright ◽  
G. O. Rankin

The levels of ionic calcium in whole blood obtained from female Sprague-Dawley (SDR). Wistar-Kyoto (WKY), and spontaneously hypertensive (SHR) rate tended to decrease between 5 and 13 wk of age. During this interval the plasma total calcium levels of each strain remained stable, indicating an increase in the binding or complexing of endogenous calcium with maturation. The ionic calcium levels of WKY were lower than those of SDR, while SHR levels were below those of the WKY and SDR strains. Neither the one-kidney, one-clip (1KHT) nor the two-kidney one-clip (2KHT) renovascular models of hypertension showed evidence of an alteration in blood ionic or total calcium concentrations compared with sham-operated controls. The ionic calcium levels of blood from deoxycorticosterone-treated (DOCA/saline) hypertensive rats were significantly reduced from those of sham-operated controls but were similar to values recorded for normotensive uninephrectomized controls. Each of the four models of hypertension studied and the normotensive uninephrectomized control group demonstrated some degree of reduction in the in vitro binding or complexing of exogenous calcium. The results indicate that the spontaneous, renovascular, and mineralocorticoid forms of hypertension examined were accompanied by some disturbance in extracellular calcium homeostasis. It is unlikely, however, that the alterations observed are primary causal factors in the maintenance of high blood pressure.


2019 ◽  
Vol 20 (17) ◽  
pp. 4118 ◽  
Author(s):  
Kloza ◽  
Baranowska-Kuczko ◽  
Toczek ◽  
Kusaczuk ◽  
Sadowska ◽  
...  

The aim of this study was to investigate the hemodynamic effects of SKA-31, an activator of the small (KCa2.x) and intermediate (KCa3.1) conductance calcium-activated potassium channels, and to evaluate its influence on endothelium-derived hyperpolarization (EDH)-KCa2.3/KCa3.1 type relaxation in isolated endothelium-intact small mesenteric arteries (sMAs) from spontaneously hypertensive rats (SHRs). Functional in vivo and in vitro experiments were performed on SHRs or their normotensive controls, Wistar-Kyoto rats (WKY). SKA-31 (1, 3 and 10 mg/kg) caused a brief decrease in blood pressure and bradycardia in both SHR and WKY rats. In phenylephrine-pre-constricted sMAs of SHRs, SKA-31 (0.01–10 µM)-mediated relaxation was reduced and SKA-31 potentiated acetylcholine-evoked endothelium-dependent relaxation. Endothelium denudation and inhibition of nitric oxide synthase (eNOS) and cyclooxygenase (COX) by the respective inhibitors l-NAME or indomethacin, attenuated SKA-31-mediated vasorelaxation. The inhibition of KCa3.1, KCa2.3, KIR and Na+/K+-ATPase by TRAM-34, UCL1684, Ba2+ and ouabain, respectively, reduced the potency and efficacy of the EDH-response evoked by SKA-31. The mRNA expression of eNOS, prostacyclin synthase, KCa2.3, KCa3.1 and KIR were decreased, while Na+/K+-ATPase expression was increased. Collectively, SKA-31 promoted hypotension and vasodilatation, potentiated agonist-stimulated vasodilation, and maintained KCa2.3/KCa3.1-EDH-response in sMAs of SHR with downstream signaling that involved KIR and Na+/K+-ATPase channels. In view of the importance of the dysfunction of endothelium-mediated vasodilatation in the mechanism of hypertension, application of activators of KCa2.3/KCa3.1 channels such as SKA-31 seem to be a promising avenue in pharmacotherapy of hypertension.


2012 ◽  
Vol 302 (9) ◽  
pp. L875-L890 ◽  
Author(s):  
Helen Christou ◽  
Ossama M. Reslan ◽  
Virak Mam ◽  
Alain F. Tanbe ◽  
Sally H. Vitali ◽  
...  

Pulmonary hypertension (PH) is characterized by pulmonary arteriolar remodeling with excessive pulmonary vascular smooth muscle cell (VSMC) proliferation. This results in decreased responsiveness of pulmonary circulation to vasodilator therapies. We have shown that extracellular acidosis inhibits VSMC proliferation and migration in vitro. Here we tested whether induction of nonhypercapnic acidosis in vivo ameliorates PH and the underlying pulmonary vascular remodeling and dysfunction. Adult male Sprague-Dawley rats were exposed to hypoxia (8.5% O2) for 2 wk, or injected subcutaneously with monocrotaline (MCT, 60 mg/kg) to develop PH. Acidosis was induced with NH4Cl (1.5%) in the drinking water 5 days prior to and during the 2 wk of hypoxic exposure (prevention protocol), or after MCT injection from day 21 to 28 (reversal protocol). Right ventricular systolic pressure (RVSP) and Fulton's index were measured, and pulmonary arteriolar remodeling was analyzed. Pulmonary and mesenteric artery contraction to phenylephrine (Phe) and high KCl, and relaxation to acetylcholine (ACh) and sodium nitroprusside (SNP) were examined ex vivo. Hypoxic and MCT-treated rats demonstrated increased RVSP, Fulton's index, and pulmonary arteriolar thickening. In pulmonary arteries of hypoxic and MCT rats there was reduced contraction to Phe and KCl and reduced vasodilation to ACh and SNP. Acidosis prevented hypoxia-induced PH, reversed MCT-induced PH, and resulted in reduction in all indexes of PH including RVSP, Fulton's index, and pulmonary arteriolar remodeling. Pulmonary artery contraction to Phe and KCl was preserved or improved, and relaxation to ACh and SNP was enhanced in NH4Cl-treated PH animals. Acidosis alone did not affect the hemodynamics or pulmonary vascular function. Phe and KCl contraction and ACh and SNP relaxation were not different in mesenteric arteries of all groups. Thus nonhypercapnic acidosis ameliorates experimental PH, attenuates pulmonary arteriolar thickening, and enhances pulmonary vascular responsiveness to vasoconstrictor and vasodilator stimuli. Together with our finding that acidosis decreases VSMC proliferation, the results are consistent with the possibility that nonhypercapnic acidosis promotes differentiation of pulmonary VSMCs to a more contractile phenotype, which may enhance the effectiveness of vasodilator therapies in PH.


Sign in / Sign up

Export Citation Format

Share Document