scholarly journals A role for TGFβ signalling in medium spiny neuron differentiation of human pluripotent stem cells

2020 ◽  
Vol 4 (2) ◽  
Author(s):  
Marija Fjodorova ◽  
Zoe Noakes ◽  
Meng Li

Abstract Activin A and other TGFβ family members have been shown to exhibit a certain degree of promiscuity between their family of receptors. We previously developed an efficient differentiation protocol using Activin A to obtain medium spiny neurons (MSNs) from human pluripotent stem cells (hPSCs). However, the mechanism underlying Activin A-induced MSN fate specification remains largely unknown. Here we begin to tease apart the different components of TGFβ pathways involved in MSN differentiation and demonstrate that Activin A acts exclusively via ALK4/5 receptors to induce MSN progenitor fate during differentiation. Moreover, we show that Alantolactone, an indirect activator of SMAD2/3 signalling, offers an alternative approach to differentiate hPSC-derived forebrain progenitors into MSNs. Further fine tuning of TGFβ pathway by inhibiting BMP signalling with LDN193189 achieves accelerated MSN fate specification. The present study therefore establishes an essential role for TGFβ signalling in human MSN differentiation and provides a fully defined and highly adaptable small molecule-based protocol to obtain MSNs from hPSCs.

2019 ◽  
Vol 18 (4) ◽  
pp. 397-405 ◽  
Author(s):  
Elena Garreta ◽  
Patricia Prado ◽  
Carolina Tarantino ◽  
Roger Oria ◽  
Lucia Fanlo ◽  
...  

2019 ◽  
Author(s):  
Ralitsa R. Madsen ◽  
James Longden ◽  
Rachel G. Knox ◽  
Xavier Robin ◽  
Franziska Völlmy ◽  
...  

AbstractActivating PIK3CA mutations are known “drivers” of human cancer and developmental overgrowth syndromes. We recently demonstrated that the “hotspot” PIK3CAH1047R variant exerts unexpected allele dose-dependent effects on stemness in human pluripotent stem cells (hPSCs). In the present study, we combine high-depth transcriptomics, total proteomics and reverse-phase protein arrays to reveal potentially disease-related alterations in heterozygous cells, and to assess the contribution of activated TGFβ signalling to the stemness phenotype of PIK3CAH1047R homozygous cells. We demonstrate signalling rewiring as a function of oncogenic PI3K signalling dose, and provide experimental evidence that self-sustained stemness is causally related to enhanced autocrine NODAL/TGFβ signalling. A significant transcriptomic signature of TGFβ pathway activation in PIK3CAH1047R heterozygous was observed but was modest and was not associated with the stemness phenotype seen in homozygous mutants. Notably, the stemness gene expression in PIK3CAH1047R homozygous iPSCs was reversed by pharmacological inhibition of TGFβ signalling, but not by pharmacological PI3Kα pathway inhibition. Altogether, this provides the first in-depth analysis of PI3K signalling in human pluripotent stem cells and directly links dose-dependent PI3K activation to developmental NODAL/TGFβ signalling.


2015 ◽  
Vol 51 (8) ◽  
pp. 769-775 ◽  
Author(s):  
Sumiyo Mimura ◽  
Mika Suga ◽  
Yujung Liu ◽  
Masaki Kinehara ◽  
Kana Yanagihara ◽  
...  

2020 ◽  
Author(s):  
Jiaqi Sun ◽  
Yinong Huang ◽  
Jin Gong ◽  
Yili Wei ◽  
Chuanfeng Xiong ◽  
...  

Abstract The successful differentiation of brain pericyte-like cells from human pluripotent stem cells may allow us to study their biological characteristics and their applications in the treatment of pericyte dysfunction-related neurodegenerative diseases, including ischemic stroke, Parkinson’s disease (PD) and so on.The protocol we present in the study provides a cranial neural crest originated, fast and robust forebrain pericyte-like cells differentiation method using either human embryonic stem cells or human induced pluripotent stem cells as a starting material.


2021 ◽  
Author(s):  
Maria Santos Cruz ◽  
Meng Li

Cortical interneurons are GABAergic inhibitory cells that connect locally in the neocortex and play a  pivotal role in shaping cortical network activities. Dysfunction of these cells is believed to lead to runaway excitation underlying seizure-based diseases, such as epilepsy, autism, and schizophrenia. There is a growing interest in using cortical interneurons derived from human pluripotent stem cells for understanding their complex development and for modeling neuropsychiatric diseases. Here, we report the identification of a novel role of TGFβ signaling in modulating interneuron progenitor maintenance and neuronal differentiation. TGFβ signaling inhibition suppresses terminal differentiation of interneuron progenitors while exogenous TGFβ3 accelerates the transition of progenitors into postmitotic neurons. We provide evidence that TGFb signaling exerts this function via regulating cell cycle length of the NKX2.1+ neural progenitors. Together, this study represents a useful platform for studying human interneuron development and interneuron associated neurological diseases with human pluripotent stem cells.


Development ◽  
2015 ◽  
Vol 142 (7) ◽  
pp. 1375-1386 ◽  
Author(s):  
C. Arber ◽  
S. V. Precious ◽  
S. Cambray ◽  
J. R. Risner-Janiczek ◽  
C. Kelly ◽  
...  

2021 ◽  
Author(s):  
Laura Prochazka ◽  
Peter W Zandstra ◽  
Yale S Michaels ◽  
Charles Lau ◽  
Mona Siu ◽  
...  

During development, state transitions are coordinated through changes in the identity of molecular regulators in a cell state- and dose specific manner. The ability to rationally engineer such functions in human pluripotent stem cells (hPSC) will enable numerous applications in regenerative medicine. Herein we report the generation of synthetic gene circuits that can detect a discrete cell state, and upon state detection, produce fine-tuned effector proteins in a programmable manner. Effectively, these gene circuits convert a discrete (digital-like) cell state into an analog signal by merging AND-like logic integration of endogenous miRNAs (classifiers) with a miRNA-mediated output fine-tuning technology (miSFITs). Using an automated miRNA identification and model-guided circuit optimization approach, we were able to produce robust cell state specific and graded output production in undifferentiated hPSC. We further finely controlled the levels of endogenous BMP4 secretion, which allowed us to document the effect of endogenous factor secretion in comparison to exogenous factor addition on early tissue development using the hPSC-derived gastruloid system. Our work provides the first demonstration of a discrete-to-analog signal conversion circuit operating in living hPSC, and a platform for customized cell state-specific control of desired physiological factors, laying the foundation for programming cell compositions in hPSC-derived tissues and beyond.


Sign in / Sign up

Export Citation Format

Share Document