Respiratory and Laryngeal Function During Whispering

1991 ◽  
Vol 34 (4) ◽  
pp. 761-767 ◽  
Author(s):  
Elaine T. Stathopoulos ◽  
Jeannette D. Hoit ◽  
Thomas J. Hixon ◽  
Peter J. Watson ◽  
Nancy Pearl Solomon

Established procedures for making chest wall kinematic observations (Hoit & Hixon, 1987) and pressure-flow observations (Smitheran & Hixon, 1981) were used to study respiratory and laryngeal function during whispering and speaking in 10 healthy young adults. Results indicate that whispering involves generally lower lung volumes, lower tracheal pressures, higher translaryngeal flows, lower laryngeal airway resistances, and fewer syllables per breath group when compared to speaking. The use of lower lung volumes during whispering than speaking may reflect a means of achieving different tracheal pressure targets. Reductions in the number of syllables produced per breath group may be an adjustment to the high rate of air expenditure accompanying whispering compared to speaking. Performance of the normal subjects studied in this investigation does not resemble that of individuals with speech and voice disorders characterized by low resistive loads.

1992 ◽  
Vol 73 (6) ◽  
pp. 2373-2381 ◽  
Author(s):  
S. J. Cala ◽  
J. Edyvean ◽  
L. A. Engel

We measured the electromyographic (EMG) activity in four chest wall and trunk (CWT) muscles, the erector spinae, latissimus dorsi, pectoralis major, and trapezius, together with the parasternal, in four normal subjects during graded inspiratory efforts against an occlusion in both upright and seated postures. We also measured CWT EMGs in six seated subjects during inspiratory resistive loading at high and low tidal volumes [1,280 +/- 80 (SE) and 920 +/- 60 ml, respectively]. With one exception, CWT EMG increased as a function of inspiratory pressure generated (Pmus) at all lung volumes in both postures, with no systematic difference in recruitment between CWT and parasternal muscles as a function of Pmus. At any given lung volume there was no consistent difference in CWT EMG at a given Pmus between the two postures (P > 0.09). However, at a given Pmus during both graded inspiratory efforts and inspiratory resistive loading, EMGs of all muscles increased with lung volume, with greater volume dependence in the upright posture (P < 0.02). The results suggest that during inspiratory efforts, CWT muscles contribute to the generation of inspiratory pressure. The CWT muscles may act as fixators opposing deflationary forces transmitted to the vertebral column by rib cage articulations, a function that may be less effective at high lung volumes if the direction of the muscular insertions is altered disadvantageously.


2001 ◽  
Vol 90 (4) ◽  
pp. 1441-1446 ◽  
Author(s):  
Mario Filippelli ◽  
Riccardo Pellegrino ◽  
Iacopo Iandelli ◽  
Gianni Misuri ◽  
Joseph R. Rodarte ◽  
...  

Lung and chest wall mechanics were studied during fits of laughter in 11 normal subjects. Laughing was naturally induced by showing clips of the funniest scenes from a movie by Roberto Benigni. Chest wall volume was measured by using a three-dimensional optoelectronic plethysmography and was partitioned into upper thorax, lower thorax, and abdominal compartments. Esophageal (Pes) and gastric (Pga) pressures were measured in seven subjects. All fits of laughter were characterized by a sudden occurrence of repetitive expiratory efforts at an average frequency of 4.6 ± 1.1 Hz, which led to a final drop in functional residual capacity (FRC) by 1.55 ± 0.40 liter ( P < 0.001). All compartments similarly contributed to the decrease of lung volumes. The average duration of the fits of laughter was 3.7 ± 2.2 s. Most of the events were associated with sudden increase in Pes well beyond the critical pressure necessary to generate maximum expiratory flow at a given lung volume. Pga increased more than Pes at the end of the expiratory efforts by an average of 27 ± 7 cmH2O. Transdiaphragmatic pressure (Pdi) at FRC and at 10% and 20% control forced vital capacity below FRC was significantly higher than Pdi at the same absolute lung volumes during a relaxed maneuver at rest ( P < 0.001). We conclude that fits of laughter consistently lead to sudden and substantial decrease in lung volume in all respiratory compartments and remarkable dynamic compression of the airways. Further mechanical stress would have applied to all the organs located in the thoracic cavity if the diaphragm had not actively prevented part of the increase in abdominal pressure from being transmitted to the chest wall cavity.


1986 ◽  
Vol 61 (6) ◽  
pp. 2243-2251 ◽  
Author(s):  
C. R. O'Donnell ◽  
R. G. Castile ◽  
J. Mead

Changes in the configuration of maximum expiratory flow-volume (MEFV) curves following mild degrees of bronchodilation or bronchoconstriction were studied in five normal and five asthmatic subjects. In a volume-displacement plethysmograph, MEFV curves were performed before and after inhalation of aerosolized isoproterenol (I) or histamine (H). Five filtered MEFV curves were averaged, and slope ratio vs. volume (SR-V) plots were obtained from averaged curves. Following I, maximal flows at 75% of the vital capacity (VC) were decreased in asthmatics but not in normal subjects. Flows at 50 and 25% of the VC increased in normal subjects and asthmatics, whereas VC′s were unchanged. In asthmatics, sudden large decreases in flow (bumps) occurred at lower lung volumes following I. H reduced flows over the entire VC, with greater reductions occurring in asthmatics than in normals, particularly at low lung volumes. In asthmatics, VC was slightly reduced, and bumps in MEFV curve configuration occurred at higher lung volumes or were abolished entirely following H. A reduction in the amount of configurational detail appreciable in MEFV curves following histamine in asthmatics was best seen in SR-V plots. Following H, SR′s decreased regularly with decreasing lung volume in all the asthmatics but in none of the normals. This was the single most striking finding of this study. Mild I- and H-induced perturbations of airway bronchomotor tone produced small but consistent changes in MEFV curve configuration.(ABSTRACT TRUNCATED AT 250 WORDS)


Author(s):  
Defne Abur ◽  
Joseph S. Perkell ◽  
Cara E. Stepp

Purpose: The goal of this study was to examine the effects of increases in vocal effort, without changing speech intensity, on respiratory and articulatory kinematics in young adults with typical voices. Method: A total of 10 participants completed a reading task under three speaking conditions: baseline, mild vocal effort, and maximum vocal effort. Respiratory inductance plethysmography bands around the chest and abdomen were used to estimate lung volumes during speech, and sensor coils for electromagnetic articulography were used to transduce articulatory movements, resulting in the following outcome measures: lung volume at speech initiation (LVSI) and at speech termination (LVST), articulatory kinematic vowel space (AKVS) of two points on the tongue dorsum (body and blade), and lip aperture. Results: With increases in vocal effort, and no statistical changes in speech intensity, speakers showed: (a) no statistically significant differences in LVST, (b) statistically significant increases in LVSI, (c) no statistically significant differences in AKVS measures, and (d) statistically significant reductions in lip aperture. Conclusions: Speakers with typical voices exhibited larger lung volumes at speech initiation during increases in vocal effort, paired with reduced lip displacements. To our knowledge, this is the first study to demonstrate evidence that articulatory kinematics are impacted by modulations in vocal effort. However, the mechanisms underlying vocal effort may differ between speakers with and without voice disorders. Thus, future work should examine the relationship between articulatory kinematics, respiratory kinematics, and laryngeal-level changes during vocal effort in speakers with and without voice disorders. Supplemental Material https://doi.org/10.23641/asha.17065457


1992 ◽  
Vol 72 (6) ◽  
pp. 2267-2270 ◽  
Author(s):  
A. Puddy ◽  
G. Giesbrecht ◽  
R. Sanii ◽  
M. Younes

Conscious humans easily detect loads applied to the respiratory system. Resistive loads as small as 0.5 cmH2O.l-1.s can be detected. Previous work suggested that afferent information from the chest wall served as the primary source of information for load detection, but the evidence for this was not convincing, and we recently reported that the chest wall was a relatively poor detector for applied elastic loads. Using the same setup of a loading device and body cast, we sought resistive load detection thresholds under three conditions: 1) loading of the total respiratory system, 2) loading such that the chest wall was protected from the load but airway and intrathoracic pressures experienced negative pressure in proportion to inspiratory flow, and 3) loading of the chest wall alone with no alteration of airway or intrathoracic pressure. The threshold for detection for the three types of load application in seven normal subjects was 1.17 +/- 0.33, 1.68 +/- 0.45, and 6.3 +/- 1.38 (SE) cmH2O.l-1.s for total respiratory system, chest wall protected, and chest wall alone, respectively. We conclude that the active chest wall is a less potent source of information for detection of applied resistive loads than structures affected by negative airway and intrathoracic pressure, a finding similar to that previously reported for elastic load detection.


1982 ◽  
Vol 53 (2) ◽  
pp. 405-412 ◽  
Author(s):  
N. M. Braun ◽  
N. S. Arora ◽  
D. F. Rochester

To characterize the in vivo force-length relation of the human diaphragm, we related pressures during static inspiratory efforts (Pmus and Pdi, respiratory muscle and transdiaphragmatic pressures, respectively) to diaphragm lengths measured on chest X rays from 22 normal subjects. At total lung capacity, the intersection of diaphragm and chest wall contours corresponds to the anatomic junction of diaphragm and chest wall. This point is located by skeletal landmarks to reveal the entire diaphragm contour on films taken at lower lung volumes. To validate the X-ray measurements, corresponding diameters were measured on 32 normal diaphragms at necropsy. After correction for height and diaphragm position, in vivo and necropsy length estimates along the coronal section agreed within 9%. The diaphragm length-lung volume relation is curvilinear, with length increasing primarily in the portion of the diaphragm apposed to the chest wall. As length increases, Pmus and Pdi rise sharply then plateau, generally conforming to force-length behavior of isolated muscle. However, absence of a Pdi peak at presumed diaphragm resting length suggests that Pdi is submaximal during voluntary inspiratory effort.


1993 ◽  
Vol 75 (2) ◽  
pp. 696-703 ◽  
Author(s):  
S. J. Johnston ◽  
K. L. Watkin ◽  
P. T. Macklem

We investigated breathing patterns in stutterers during relatively fluent speech and compared these with normal subjects for similar speech tasks. Rib cage and abdominal displacements and esophageal, gastric, and transdiaphragmatic pressures provided indexes of diaphragmatic, rib cage, and abdominal muscle contraction. We found that stutterers spoke either at substantially higher or lower lung volumes than normal subjects, confining their speech to the inspiratory capacity or expiratory reserve volume. During spontaneous speech, stutterers did not cross functional residual capacity (FRC) for most breaths. In addition, stutterers used several different motion pathways from breath to breath. At high lung volumes stutterers used the diaphragm to provide inspiratory braking. At lung volumes below FRC stutterers recruited their abdominals. This contrasted with normal subjects who spoke in the middle part of the vital capacity and who recruited inspiratory and expiratory rib cage muscles above and below FRC, respectively. Breath sizes were log-normally distributed in stutterers compared with a gaussian distribution in normal subjects (P < 0.001). During reading, stutterers tended to cross FRC (P < 0.01), used very similar initiation lung volumes from breath to breath (P < 0.001), and used similar motion pathways to achieve deflation. We conclude that stutterers sustain fluency by speaking at abnormally high or low lung volumes and that this may account for the different muscle patterns observed in stutterers compared with normal subjects.


1989 ◽  
Vol 67 (4) ◽  
pp. 1542-1550 ◽  
Author(s):  
M. Paiva ◽  
M. Estenne ◽  
L. A. Engel

We studied the changes in functional residual capacity (FRC), thoracoabdominal volume (Vw), and chest wall configuration in five normal subjects seated in an aircraft flying parabolic trajectories resulting in 20-s periods of microgravity. We measured vital capacity (VC), inspiratory capacity, and tidal volume by integrating airflow at the mouth and changes in rib cage and abdominal volume (delta Vrc and delta Vab, respectively, where delta Vrc + delta Vab = delta Vw) using induction plethysmography. During microgravity (0 Gz) FRC decreased by 413 +/- 70 (SE) ml and VC by 0.37 liter. The decrease in Vw did not differ from that in FRC and was entirely the result of reduction of Vab, the Vrc showing no significant change. During tidal breathing the abdominal contribution (delta Vab/delta Vw) increased from 0.39 +/- 0.08 at 1 Gz to 0.57 +/- 0.08 at 0 Gz. During brief periods of hypergravity (approximately 1.8 Gz) all changes were opposite in sign and relatively smaller. Limited data during "roller coaster" flight patterns suggested that, in contrast to configurational changes, the temporal pattern of breathing was uninfluenced by changes in Gz. We conclude that at the onset of weightlessness there are substantial changes in lung volume and thoracoabdominal configuration. Abdominal contribution to tidal excursions increases but the temporal pattern of breathing is unchanged.


2018 ◽  
Vol 124 (5) ◽  
pp. 1186-1193 ◽  
Author(s):  
Hisham Taher ◽  
Christian Bauer ◽  
Eric Abston ◽  
David W. Kaczka ◽  
Surya P. Bhatt ◽  
...  

Chest wall strapping (CWS) induces breathing at low lung volumes but also increases parenchymal elastic recoil. In this study, we tested the hypothesis that CWS dilates airways via airway-parenchymal interdependence. In 11 subjects (6 healthy and 5 with mild to moderate COPD), pulmonary function tests and lung volumes were obtained in control (baseline) and the CWS state. Control and CWS-CT scans were obtained at 50% of control (baseline) total lung-capacity (TLC). CT lung volumes were analyzed by CT volumetry. If control and CWS-CT volumetry did not differ by more than 25%, airway dimensions were analyzed via automated airway segmentation. CWS-TLC was reduced on average to 71% of control-TLC in normal subjects and 79% of control-TLC in subjects with COPD. CWS increased expiratory airflow at 50% of control-TLC by 41% (3.50 ± 1.6 vs. 4.93 ± 1.9 l/s, P = 0.04) in normals and 316% in COPD(0.25 ± 0.05 vs 0.79 ± 0.39 l/s, P = 0.04). In 10 subjects (5 normals and 5 COPD), control and CWS-CT scans at 50% control-TLC did not differ more than 25% on CT volumetry and were included in the airway structure analysis. CWS increased the mean number of detectable airways with a diameter of ≤2 mm by 32.5% (65 ± 10 vs. 86 ± 124, P = 0.01) in normal subjects and by 79% (59 ± 19 vs. 104 ± 16, P = 0.01) in subjects with COPD. There was no difference in the number of detectable airways with diameters 2–4 mm and >4 mm in normal or in COPD subjects. In conclusion, CWS enhances the detection of small airways via automated CT airway segmentation and increases expiratory airflow in normal subjects as well as in subjects with mild to moderate COPD. NEW & NOTEWORTHY In normal and COPD subjects, chest wall strapping(CWS) increased the number of detectable small airways using automated CT airway segmentation. The concept of dysanapsis expresses the physiological variation in the geometry of the tracheobronchial tree and lung parenchyma based on development. We propose a dynamic concept to dysanapsis in which CWS leads to breathing at lower lung volumes with a corresponding increase in the size of small airways, a potentially novel, nonpharmacological treatment for COPD.


1961 ◽  
Vol 39 (8) ◽  
pp. 1215-1222 ◽  
Author(s):  
Reuben M. Cherniack ◽  
Clarence A. Guenter

The work done to overcome the elastic resistance and the efficiency of the respiratory muscles were determined in normal and obese subjects. The work done was no greater in the obese subjects, but the efficiency of the muscles was low. These findings suggest that the high oxygen cost of breathing in obesity is due to inefficient respiratory muscles rather than to an increased amount of work required to overcome elastic resistance. When an extrapulmonary elastic resistance was applied to the normal subjects, the compliance of the chest wall and the efficiency of the respiratory muscles fell to the level of that in the obese. This suggests that the inefficiency of the respiratory muscles of obese individuals may have been due to the reduced chest wall compliance or to the lower lung volume at which ventilation took place.


Sign in / Sign up

Export Citation Format

Share Document