Sugar-beet powdery mildew (Erysiphe betae )

2002 ◽  
Vol 3 (3) ◽  
pp. 119-124 ◽  
Author(s):  
Sally Francis
Plant Disease ◽  
2017 ◽  
Vol 101 (1) ◽  
pp. 254-254
Author(s):  
J. H. Joa ◽  
K. C. Seong ◽  
I. Y. Choi ◽  
S. E. Cho ◽  
H. D. Shin

2019 ◽  
Vol 20 (3) ◽  
pp. 179-179 ◽  
Author(s):  
Thies Marten Heick ◽  
Anne Lisbet Hansen ◽  
Annemarie Fejer Justesen ◽  
Lise Nistrup Jørgensen

Powdery mildew caused by Erysiphe betae is one of the major fungal diseases in sugar beet in Denmark and Sweden. Frequent applications of fungicides mitigate the risk of powdery mildew epidemics and, consequently, reduce yield losses conferred by the disease. So far, mixtures of quinone outside inhibitors (QoIs) and triazoles have provided good efficacy against E. betae in field trials and common farming practice. However, development of fungicide resistance is a real risk, because only a limited number of active ingredients are available for the control of powdery mildew in sugar beet, and several other active ingredients are expected to be banned following reevaluation when the most recent European Union legislation is implemented. The G143A mutation associated with QoI resistance has been previously found in the United States. In this brief, its presence in Europe is reported for the first time. The current finding strongly encourages the adoption of anti-resistance strategies that minimize the spread of QoI resistance in sugar beet powdery mildew. Those strategies should be based on integrated pest management measures, including disease monitoring, the use of resistant cultivars, and the use of biological products. A sole reliance on QoI fungicides for sugar beet powdery mildew control should be avoided.


Author(s):  
J. N. Kapoor

Abstract A description is provided for Erysiphe betae. Information is included on the disease caused by the organism, its transmission, geographical distribution, and hosts. HOSTS: On Beta corolliflora, B. intermedia, B. maritima, B. trigyna, B. vulgaris and B. vulgaris var. cycla (Hirata, 1966). DISEASE: Powdery mildew of sugar beet. GEOGRAPHICAL DISTRIBUTION: Africa (Libya); Asia (Iran, Israel, Japan, Lebanon, Turkey); Europe (widely distributed). (Hirata, 1966). TRANSMISSION: Not known. However, seed treatment with 2, 4-D, heterosuxin, gibberellin and succinic acid has been reported to lower infection (44, 1315).


2018 ◽  
Vol 25 (1) ◽  
Author(s):  
Agnė Sadauskienė ◽  
Zita Brazienė ◽  
Zenonas Dabkevičius

The research was conducted on 11 sugar beet varieties, grown at the Rumokai Experimental Station of the Lithuanian Research Center for Agriculture and Forestry, in 2016 and 2017. The experiments were carried out on two backgrounds: the crops were not sprayed and sprayed with fungicide epoxiconazole 125 g l–1. During the study years, rust (causative agent Uromyces beticola), powdery mildew (causative agent Erysiphe betae Vaňha Weltzien) and leaf spot disease (causative agent Cercospora beticola Sacc.) were the most prevalent in sugar beet. Rust, the intensity of which was 9.66–61.79%, caused most damage to sugar beet. The intensity of powdery mildew was 12.71–55.98% and that of leaf spot disease was 7.47–54.23%. Of the investigated varieties of sugar beet, the most sensitive to leaf spot disease were ‘Merens’, ‘Balear’, ‘Davinci’, ‘Kashmir’ and ‘Pottok’, the most resistant were ‘Berton’, ‘Selma KWS’ and ‘Wellington’. ‘Merens’ and ‘Texel’ were the most sensitive to rust. This disease was least damaging to the ‘Minta’, ‘Berton’ and ‘Strauss’ varieties. Powdery mildew was most harmful to leaves of the ‘Merens’, ‘Balear’ and ‘Minta’ varieties of sugar beet. The most resistant to powdery mildew was ‘Texel’. According to the average two-year data, the most productive was the ‘Pottok’ variety, whose root yield was 90.46– 93.85 t ha–1. The ‘Straus’ variety had the highest sugar content. Epoxiconazole increased the sugar beet yield from 0.44 to 6.53 t ha–1 in 2016 and from 0.07 to 11.63 t ha–1 in 2017.


2016 ◽  
Vol 44 (1) ◽  
pp. 49-56
Author(s):  
Medhat Abd-Rabboh ◽  
Mohamed El-Shennawy

Plant Disease ◽  
2005 ◽  
Vol 89 (12) ◽  
pp. 1362-1362
Author(s):  
B. Jacobsen ◽  
M. R. Johnston ◽  
H. C. Weltzien

Wide spread powdery mildew infections on sugar beets were observed at the Southern Agricultural Experiment Station in Huntley, MT during September, 2003. Throughout the area, lower leaves were frequently heavily covered by the vegetative stage of the fungus with plants at the edge of the field having clearly visible abundant mature (black) and immature (brown) globose ascocarps on the leaf surfaces and stems. The fruiting structures had mostly branched appendages and were imbedded in the superficial mycelium. Their diameter ranged from 70 to 100 μm. Each ascocarp contained five to eight asci with one to four ascospores (mostly three) per ascus. Elliptical ascospores were hyaline and measured 20 to 25 μm long and 12 to 20 μm wide. On the basis of the descriptions given for isolates from Idaho and Colorado (1) and the usage of Erysiphe polygoni DC for powdery mildew on sugar beet in the United States, this isolate may be classified as E. polygoni DC. However, measurements taken show that ascocarps, asci, and ascospores also fall within the range of E. betae (Vanha) Weltz. as described by Weltzien (2). We strongly suggest that these species be compared by using rDNA analysis of the ITS region to determine whether they are separate species. If survival of the ascocarps and the viability and pathogenicity of the ascospores can be confirmed, epidemics of sugar beet powdery mildew could be understood as local and regional events that are not dependant on long distance dispersal of conidiospores. The occurrence of the perfect stage also could lead to the more frequent appearance of new races through genetic recombination. References: (1) J. J Gallian and L. E. Hanson. Plant Dis. 87:200, 2003. (2) H. C. Weltzien. Phytopathol. Z. 47:123, 1963.


Sign in / Sign up

Export Citation Format

Share Document