Serum levels of free insulin-like growth factor (IGF)-I and IGF-binding protein-1 in prepubertal children with idiopathic short stature

2000 ◽  
Vol 53 (6) ◽  
pp. 683-688 ◽  
Author(s):  
Tomohiro Kamoda ◽  
Hisako Saitoh ◽  
Takeki Hirano ◽  
Akira Matsui
2018 ◽  
Vol 31 (9) ◽  
pp. 1009-1017 ◽  
Author(s):  
Anil Kumar ◽  
Ankita Pal ◽  
Mani Kalaivani ◽  
Nandita Gupta ◽  
Vandana Jain

Abstract Background Our objectives were to evaluate the etiology of short stature, assess the prevalence of idiopathic short stature (ISS) and assess the growth hormone (GH)-insulin-like growth factor (IGF) axis in children with ISS. Methods A stepwise diagnostic evaluation was done in 394 children aged 4–16 years with short stature. Children with no definitive etiology were labeled as ISS. In these children, baseline IGF-1, IGF binding protein-3 (IGFBP-3) and stimulated IGF-1 after administration of GH for 4 days were measured. Results Hypothyroidism (in 18.1%) and ISS (in 15.5%) were the commonest causes of short stature. In children with ISS (n=61), the mean baseline and stimulated IGF-1 standard deviation scores (SDSs) were −1.2±1.0 and −0.3±1.4, respectively, with levels below −2 SDS in 13 (21%) and six (10%) children, respectively. In 33 (54%) of the ISS patients, response to GH was suboptimal (increment in the IGF-1 level <40%). There was no difference in the mean peak GH, IGFBP-3 and baseline and stimulated IGF-1 levels between children with familial and non-familial ISS. A significant positive correlation of height SDS with baseline IGF-1 SDS (r=0.28, p=0.026), stimulated IGF-1 SDS (r=0.32, p=0.010) and ΔIGF-1 SDS (r=0.26, p=0.036) was observed in children with ISS. Conclusions Hypothyroidism and ISS were the commonest etiologies for short stature. The baseline IGF-1 was below −2 SDS in 21% and the increment after GH stimulation was suboptimal in 54% of children, indicating that a substantial proportion of children with ISS had an impaired GH-IGF axis.


1994 ◽  
Vol 131 (2) ◽  
pp. 150-155 ◽  
Author(s):  
M Kassem ◽  
K Brixen ◽  
W Blum ◽  
L Mosekilde ◽  
EF Eriksen

Kassem M, Brixen K, Blum W, Mosekilde L, Eriksen EF. No evidence for reduced spontaneous or growth-hormone-stimulated serum levels of insulin-like growth factor (IGF)-I, IGF-II or IGF binding protein 3 in women with spinal osteoporosis. Eur J Endocrinol 1994;131:150–5. ISSN 0804–4643 To test the hypothesis that a dysfunctional growth hormone (GH)–insulin-like growth factor (IGF) axis may play a role in the pathogenesis of osteoporosis, we compared the levels of IGF-I, IGF-II and IGF binding protein 3 (IGFBP-3) in 15 women with spinal osteoporosis (i.e. at least one non-traumatic vertebral fracture) and 15 normal age-matched women. Furthermore, the response to 3 days' treatment with recombinant human GH (r-hGH) (0.2 IU kg−1·day−1) was determined. The basal levels of IGF-I, IGF-II and IGFBP-3 were similar in patients and controls (mean ± sem): IGF-I, 16.5 ± 1.3 versus 16.0 ± 1.3 nmol/l (NS); IGF-II, 79.9 ± 3.6 versus 72.5 ± 4.1 nmol/l (NS); and IGFBP-3, 125.7 ± 6.5 versus 130.3 ± 7.8 nmol/l (NS). Stimulation with r-hGH elicited increased levels of IGF-I, IGF-II and IGFBP-3 within both groups (p < 0.001). The maximal values expressed as a percentage of baseline were: IGF-I, 341 ± 26% versus 369 ± 22%, IGF-II, 125 ± 4% versus 119 ± 5%, IGFBP-3, 141 ± 5% versus 147 ± 7% in osteoporotic patients and controls, respectively. No significant differences were observed between patients and controls in either their maximal response or in the area under the response curves. Our results do not support the hypothesis of a dysfunctional GH–IGF axis in women with spinal osteoporosis. Kim Brixen, University Department of Endocrinology and Metabolism, Aarhus Amtssygehus, Tage-Hansens gade 2, DK-8000 Aarhus C, Denmark


Sign in / Sign up

Export Citation Format

Share Document