Rhizobial lipochitooligosaccharide nodulation factors activate expression of the legume early nodulin gene ENOD12 in rice

1998 ◽  
Vol 14 (6) ◽  
pp. 693-702 ◽  
Author(s):  
Pallavolu M. Reddy ◽  
Jagdish K. Ladha ◽  
Marilou C. Ramos ◽  
Fabienne Maillet ◽  
Rowena J. Hernandez ◽  
...  
2001 ◽  
Vol 21 (1) ◽  
pp. 354-366 ◽  
Author(s):  
Carolina Sousa ◽  
Christina Johansson ◽  
Celine Charon ◽  
Hamid Manyani ◽  
Christof Sautter ◽  
...  

ABSTRACT A diversity of mRNAs containing only short open reading frames (sORF-RNAs; encoding less than 30 amino acids) have been shown to be induced in growth and differentiation processes. The early nodulin geneenod40, coding for a 0.7-kb sORF-RNA, is expressed in the nodule primordium developing in the root cortex of leguminous plants after infection by symbiotic bacteria. Ballistic microtargeting of this gene into Medicago roots induced division of cortical cells. Translation of two sORFs (I and II, 13 and 27 amino acids, respectively) present in the conserved 5′ and 3′ regions ofenod40 was required for this biological activity. These sORFs may be translated in roots via a reinitiation mechanism. In vitro translation products starting from the ATG of sORF I were detectable by mutating enod40 to yield peptides larger than 38 amino acids. Deletion of a Medicago truncatula enod40 region between the sORFs, spanning a predicted RNA structure, did not affect their translation but resulted in significantly decreased biological activity. Our data reveal a complex regulation of enod40action, pointing to a role of sORF-encoded peptides and structured RNA signals in developmental processes involving sORF-RNAs.


1993 ◽  
Vol 21 (2) ◽  
pp. 375-380 ◽  
Author(s):  
Lori A. Allison ◽  
Gy�rgy B. Kiss ◽  
Petra Bauer ◽  
Maryse Poiret ◽  
Mich�le Pierre ◽  
...  

Author(s):  
L. Cárdenas ◽  
J. Feijó ◽  
J. G. Kunkel ◽  
L. Vidali ◽  
J. Domínguez ◽  
...  

BMC Genomics ◽  
2014 ◽  
Vol 15 (1) ◽  
pp. 500 ◽  
Author(s):  
Janina Österman ◽  
Joanne Marsh ◽  
Pia K Laine ◽  
Zhen Zeng ◽  
Edward Alatalo ◽  
...  

2000 ◽  
Vol 13 (9) ◽  
pp. 987-994 ◽  
Author(s):  
Emmanouil Flemetakis ◽  
Nektarios Kavroulakis ◽  
Nicolette E. M. Quaedvlieg ◽  
Herman P. Spaink ◽  
Maria Dimou ◽  
...  

ENOD40, an early nodulin gene, has been postulated to play a significant role in legume root nodule ontogenesis. We have isolated two distinct ENOD40 genes from Lotus japonicus. The transcribed regions of the two ENOD40 genes share 65% homology, while the two promoters showed no significant homology. Both transcripts encode a putative dodecapeptide similar to that identified in other legumes forming determinate nodules. Both ENOD40 genes are coordinately expressed following inoculation of roots with Mesorhizobium loti or treatment with purified Nod factors. In the former case, mRNA accumulation could be detected up to 10 days following inoculation while in the latter case the accumulation was transient. High levels of both ENOD40 gene transcripts were found in nonsymbiotic tissues such as stems, fully developed flowers, green seed pods, and hypocotyls. A relatively lower level of both transcripts was observed in leaves, roots, and cotyledons. In situ hybridization studies revealed that, in mature nodules, transcripts of both ENOD40 genes accumulate in the nodule vascular system; additionally, in young seed pods strong signal is observed in the ovule, particularly in the phloem and epithelium, as well as in globular stage embryos.


2007 ◽  
Vol 35 (6) ◽  
pp. 1638-1642 ◽  
Author(s):  
P. Laporte ◽  
F. Merchan ◽  
B.B. Amor ◽  
S. Wirth ◽  
M. Crespi

npcRNA (non-protein-coding RNAs) are an emerging class of regulators, so-called riboregulators, and include a large diversity of small RNAs [miRNAs (microRNAs)/siRNAs (small interfering RNAs)] that are involved in various developmental processes in plants and animals. In addition, several other npcRNAs encompassing various transcript sizes (up to several kilobases) have been identified using different genomic approaches. Much less is known about the mechanism of action of these other classes of riboregulators also present in the cell. The organogenesis of nitrogen-fixing nodules in legume plants is initiated in specific root cortical cells that express the npcRNA MtENOD40 (Medicago truncatula early nodulin 40). We have identified a novel RBP (RNA-binding protein), MtRBP1 (M. truncatula RBP 1), which interacts with the MtENOD40 RNA, and is exported into the cytoplasm during legume nodule development in the region expressing MtENOD40. A direct involvement of the MtENOD40 RNA in the relocalization of this RBP into cytoplasmic granules could be demonstrated, revealing a new RNA function in the cell. To extend these results, we searched for npcRNAs in the model plant Arabidopsis thaliana whose genome is completely known. We have identified 86 novel npcRNAs from which 27 corresponded to antisense RNAs of known coding regions. Using a dedicated ‘macroarray’ containing these npcRNAs and a collection of RBPs, we characterized their regulation in different tissues and plants subjected to environmental stresses. Most of the npcRNAs showed high variations in gene expression in contrast with the RBP genes. Recent large-scale analysis of the sRNA component of the transcriptome revealed an enormous diversity of siRNAs/miRNAs in the Arabidopsis genome. Bioinformatic analysis revealed that 34 large npcRNAs are precursors of siRNAs/miRNAs. npcRNAs, which are a sensitive component of the transcriptome, may reveal novel riboregulatory mechanisms involved in post-transcriptional control of differentiation or environmental responses.


2007 ◽  
Vol 143 (4) ◽  
pp. 1576-1589 ◽  
Author(s):  
Junaid A. Khan ◽  
Qi Wang ◽  
Richard D. Sjölund ◽  
Alexander Schulz ◽  
Gary A. Thompson

2018 ◽  
Vol 31 (5) ◽  
pp. 568-575 ◽  
Author(s):  
Marta Robledo ◽  
Esther Menéndez ◽  
Jose Ignacio Jiménez-Zurdo ◽  
Raúl Rivas ◽  
Encarna Velázquez ◽  
...  

The infection of legume plants by rhizobia is tightly regulated to ensure accurate bacterial penetration, infection, and development of functionally efficient nitrogen-fixing root nodules. Rhizobial Nod factors (NF) have key roles in the elicitation of nodulation signaling. Infection of white clover roots also involves the tightly regulated specific breakdown of the noncrystalline apex of cell walls in growing root hairs, which is mediated by Rhizobium leguminosarum bv. trifolii cellulase CelC2. Here, we have analyzed the impact of this endoglucanase on symbiotic signaling in the model legume Medicago truncatula. Ensifer meliloti constitutively expressing celC gene exhibited delayed nodulation and elicited aberrant ineffective nodules, hampering plant growth in the absence of nitrogen. Cotreatment of roots with NF and CelC2 altered Ca2+ spiking in root hairs and induction of the early nodulin gene ENOD11. Our data suggest that CelC2 alters early signaling between partners in the rhizobia-legume interaction.


Sign in / Sign up

Export Citation Format

Share Document