scholarly journals Repair of UV damage in plants by nucleotide excision repair: Arabidopsis UVH1 DNA repair gene is a homolog of Saccharomyces cerevisiae Rad1

2000 ◽  
Vol 21 (6) ◽  
pp. 519-528 ◽  
Author(s):  
Zongrang Liu ◽  
Gazi Showkat Hossain ◽  
Maria A. Islas-Osuna ◽  
David L. Mitchell ◽  
David W. Mount
1995 ◽  
Vol 15 (12) ◽  
pp. 7067-7080 ◽  
Author(s):  
A R Lehmann ◽  
M Walicka ◽  
D J Griffiths ◽  
J M Murray ◽  
F Z Watts ◽  
...  

The rad18 mutant of Schizosaccharomyces pombe is very sensitive to killing by both UV and gamma radiation. We have cloned and sequenced the rad18 gene and isolated and sequenced its homolog from Saccharomyces cerevisiae, designated RHC18. The predicted Rad18 protein has all the structural properties characteristic of the SMC family of proteins, suggesting a motor function--the first implicated in DNA repair. Gene deletion shows that both rad18 and RHC18 are essential for proliferation. Genetic and biochemical analyses suggest that the product of the rad18 gene acts in a DNA repair pathway for removal of UV-induced DNA damage that is distinct from classical nucleotide excision repair. This second repair pathway involves the products of the rhp51 gene (the homolog of the RAD51 gene of S. cerevisiae) and the rad2 gene.


2021 ◽  
Author(s):  
Allison J. Matthews ◽  
Hannah M. Rowe ◽  
Jason W. Rosch ◽  
Andrew Camilli

Streptococcus pneumoniae is an opportunistic pathogen that is a common cause of serious invasive diseases such as pneumonia, bacteremia, meningitis, and otitis media. Transmission of this bacterium has classically been thought to occur through inhalation of respiratory droplets and direct contact with nasal secretions. However, the demonstration that S. pneumoniae is desiccation tolerant, and therefore environmentally stable for extended periods of time, opens up the possibility that this pathogen is also transmitted via contaminated surfaces (fomites). To better understand the molecular mechanisms that enable S. pneumoniae to survive periods of desiccation, we performed a high-throughput transposon sequencing (Tn-seq) screen in search of genetic determinants of desiccation tolerance. We identified 42 genes whose disruption reduced desiccation tolerance, and 45 genes that enhanced desiccation tolerance. The nucleotide excision repair pathway was the most enriched category in our Tn-seq results, and we found that additional DNA repair pathways are required for desiccation tolerance, demonstrating the importance of maintaining genome integrity after desiccation. Deletion of the nucleotide excision repair gene uvrA resulted in a delay in transmission between infant mice, indicating a correlation between desiccation tolerance and pneumococcal transmission. Understanding the molecular mechanisms that enable pneumococcal persistence in the environment may enable targeting of these pathways to prevent fomite transmission, thereby preventing the establishment of new colonization and any resulting invasive disease.


1989 ◽  
Vol 9 (4) ◽  
pp. 1794-1798 ◽  
Author(s):  
M van Duin ◽  
J van Den Tol ◽  
J H Hoeijmakers ◽  
D Bootsma ◽  
I P Rupp ◽  
...  

We report that the genes for the homologous Saccharomyces cerevisiae RAD10 and human ERCC-1 DNA excision repair proteins harbor overlapping antisense transcription units in their 3' regions. Since naturally occurring antisense transcription is rare in S. cerevisiae and humans (this is the first example in human cells), our findings indicate that antisense transcription in the ERCC-1-RAD10 gene regions represents an evolutionarily conserved feature.


1995 ◽  
Vol 15 (4) ◽  
pp. 2245-2251 ◽  
Author(s):  
E L Ivanov ◽  
J E Haber

HO endonuclease-induced double-strand breaks (DSBs) in the yeast Saccharomyces cerevisiae can be repaired by the process of gap repair or, alternatively, by single-strand annealing if the site of the break is flanked by directly repeated homologous sequences. We have shown previously (J. Fishman-Lobell and J. E. Haber, Science 258:480-484, 1992) that during the repair of an HO-induced DSB, the excision repair gene RAD1 is needed to remove regions of nonhomology from the DSB ends. In this report, we present evidence that among nine genes involved in nucleotide excision repair, only RAD1 and RAD10 are required for removal of nonhomologous sequences from the DSB ends. rad1 delta and rad10 delta mutants displayed a 20-fold reduction in the ability to execute both gap repair and single-strand annealing pathways of HO-induced recombination. Mutations in RAD2, RAD3, and RAD14 reduced HO-induced recombination by about twofold. We also show that RAD7 and RAD16, which are required to remove UV photodamage from the silent HML, locus, are not required for MAT switching with HML or HMR as a donor. Our results provide a molecular basis for understanding the role of yeast nucleotide excision repair gene and their human homologs in DSB-induced recombination and repair.


2020 ◽  
Author(s):  
Allison J. Matthews ◽  
Hannah M. Rowe ◽  
Jason W. Rosch ◽  
Andrew Camilli

ABSTRACTStreptococcus pneumoniae is an opportunistic pathogen that is a common cause of serious invasive diseases such as pneumonia, bacteremia, meningitis, and otitis media. Transmission of this bacterium has classically been thought to occur through inhalation of respiratory droplets and direct contact with nasal secretions. However, the demonstration that S. pneumoniae is desiccation tolerant, and therefore environmentally stable for extended periods of time, opens up the possibility that this pathogen is also transmitted via contaminated surfaces (fomites). To better understand the molecular mechanisms that enable S. pneumoniae to survive periods of desiccation, we performed a high throughput transposon sequencing (Tn-seq) screen in search of genetic determinants of desiccation tolerance. We identified 42 genes whose disruption reduced desiccation tolerance, and 45 genes that enhanced desiccation tolerance. The nucleotide excision repair pathway was the most enriched category in our Tn-seq results, and we found that additional DNA repair pathways are required for desiccation tolerance, demonstrating the importance of maintaining genome integrity after desiccation. Deletion of the nucleotide excision repair gene uvrA resulted in decreased transmission efficiency between infant mice, indicating a correlation between desiccation tolerance and pneumococcal transmission. Understanding the molecular mechanisms that enable pneumococcal persistence in the environment may enable targeting of these pathways to prevent fomite transmission, thereby preventing the establishment of new colonization and any resulting invasive disease.


1993 ◽  
Vol 13 (12) ◽  
pp. 7757-7765
Author(s):  
J F Watkins ◽  
P Sung ◽  
L Prakash ◽  
S Prakash

In eukaryotes, the posttranslational conjugation of ubiquitin to various cellular proteins marks them for degradation. Interestingly, several proteins have been reported to contain ubiquitin-like (ub-like) domains that are in fact specified by the DNA coding sequences of the proteins. The biological role of the ub-like domain in these proteins is not known; however, it has been proposed that this domain functions as a degradation signal rendering the proteins unstable. Here, we report that the product of the Saccharomyces cerevisiae RAD23 gene, which is involved in excision repair of UV-damaged DNA, bears a ub-like domain at its amino terminus. This finding has presented an opportunity to define the functional significance of this domain. We show that deletion of the ub-like domain impairs the DNA repair function of RAD23 and that this domain can be functionally substituted by the authentic ubiquitin sequence. Surprisingly, RAD23 is highly stable, and the studies reported herein indicate that its ub-like domain does not mediate protein degradation. Thus, in RAD23 at least, the ub-like domain affects protein function in a nonproteolytic manner.


1993 ◽  
Vol 13 (12) ◽  
pp. 7757-7765 ◽  
Author(s):  
J F Watkins ◽  
P Sung ◽  
L Prakash ◽  
S Prakash

In eukaryotes, the posttranslational conjugation of ubiquitin to various cellular proteins marks them for degradation. Interestingly, several proteins have been reported to contain ubiquitin-like (ub-like) domains that are in fact specified by the DNA coding sequences of the proteins. The biological role of the ub-like domain in these proteins is not known; however, it has been proposed that this domain functions as a degradation signal rendering the proteins unstable. Here, we report that the product of the Saccharomyces cerevisiae RAD23 gene, which is involved in excision repair of UV-damaged DNA, bears a ub-like domain at its amino terminus. This finding has presented an opportunity to define the functional significance of this domain. We show that deletion of the ub-like domain impairs the DNA repair function of RAD23 and that this domain can be functionally substituted by the authentic ubiquitin sequence. Surprisingly, RAD23 is highly stable, and the studies reported herein indicate that its ub-like domain does not mediate protein degradation. Thus, in RAD23 at least, the ub-like domain affects protein function in a nonproteolytic manner.


1989 ◽  
Vol 9 (4) ◽  
pp. 1794-1798
Author(s):  
M van Duin ◽  
J van Den Tol ◽  
J H Hoeijmakers ◽  
D Bootsma ◽  
I P Rupp ◽  
...  

We report that the genes for the homologous Saccharomyces cerevisiae RAD10 and human ERCC-1 DNA excision repair proteins harbor overlapping antisense transcription units in their 3' regions. Since naturally occurring antisense transcription is rare in S. cerevisiae and humans (this is the first example in human cells), our findings indicate that antisense transcription in the ERCC-1-RAD10 gene regions represents an evolutionarily conserved feature.


Genetics ◽  
2000 ◽  
Vol 154 (1) ◽  
pp. 133-146 ◽  
Author(s):  
Ainsley Nicholson ◽  
Miyono Hendrix ◽  
Sue Jinks-Robertson ◽  
Gray F Crouse

Abstract The Saccharomyces cerevisiae homologs of the bacterial mismatch repair proteins MutS and MutL correct replication errors and prevent recombination between homeologous (nonidentical) sequences. Previously, we demonstrated that Msh2p, Msh3p, and Pms1p regulate recombination between 91% identical inverted repeats, and here use the same substrates to show that Mlh1p and Msh6p have important antirecombination roles. In addition, substrates containing defined types of mismatches (base-base mismatches; 1-, 4-, or 12-nt insertion/deletion loops; or 18-nt palindromes) were used to examine recognition of these mismatches in mitotic recombination intermediates. Msh2p was required for recognition of all types of mismatches, whereas Msh6p recognized only base-base mismatches and 1-nt insertion/deletion loops. Msh3p was involved in recognition of the palindrome and all loops, but also had an unexpected antirecombination role when the potential heteroduplex contained only base-base mismatches. In contrast to their similar antimutator roles, Pms1p consistently inhibited recombination to a lesser degree than did Msh2p. In addition to the yeast MutS and MutL homologs, the exonuclease Exo1p and the nucleotide excision repair proteins Rad1p and Rad10p were found to have roles in inhibiting recombination between mismatched substrates.


Sign in / Sign up

Export Citation Format

Share Document