scholarly journals The rad18 gene of Schizosaccharomyces pombe defines a new subgroup of the SMC superfamily involved in DNA repair.

1995 ◽  
Vol 15 (12) ◽  
pp. 7067-7080 ◽  
Author(s):  
A R Lehmann ◽  
M Walicka ◽  
D J Griffiths ◽  
J M Murray ◽  
F Z Watts ◽  
...  

The rad18 mutant of Schizosaccharomyces pombe is very sensitive to killing by both UV and gamma radiation. We have cloned and sequenced the rad18 gene and isolated and sequenced its homolog from Saccharomyces cerevisiae, designated RHC18. The predicted Rad18 protein has all the structural properties characteristic of the SMC family of proteins, suggesting a motor function--the first implicated in DNA repair. Gene deletion shows that both rad18 and RHC18 are essential for proliferation. Genetic and biochemical analyses suggest that the product of the rad18 gene acts in a DNA repair pathway for removal of UV-induced DNA damage that is distinct from classical nucleotide excision repair. This second repair pathway involves the products of the rhp51 gene (the homolog of the RAD51 gene of S. cerevisiae) and the rad2 gene.

2000 ◽  
Vol 21 (6) ◽  
pp. 519-528 ◽  
Author(s):  
Zongrang Liu ◽  
Gazi Showkat Hossain ◽  
Maria A. Islas-Osuna ◽  
David L. Mitchell ◽  
David W. Mount

1989 ◽  
Vol 9 (4) ◽  
pp. 1794-1798 ◽  
Author(s):  
M van Duin ◽  
J van Den Tol ◽  
J H Hoeijmakers ◽  
D Bootsma ◽  
I P Rupp ◽  
...  

We report that the genes for the homologous Saccharomyces cerevisiae RAD10 and human ERCC-1 DNA excision repair proteins harbor overlapping antisense transcription units in their 3' regions. Since naturally occurring antisense transcription is rare in S. cerevisiae and humans (this is the first example in human cells), our findings indicate that antisense transcription in the ERCC-1-RAD10 gene regions represents an evolutionarily conserved feature.


1993 ◽  
Vol 13 (12) ◽  
pp. 7757-7765
Author(s):  
J F Watkins ◽  
P Sung ◽  
L Prakash ◽  
S Prakash

In eukaryotes, the posttranslational conjugation of ubiquitin to various cellular proteins marks them for degradation. Interestingly, several proteins have been reported to contain ubiquitin-like (ub-like) domains that are in fact specified by the DNA coding sequences of the proteins. The biological role of the ub-like domain in these proteins is not known; however, it has been proposed that this domain functions as a degradation signal rendering the proteins unstable. Here, we report that the product of the Saccharomyces cerevisiae RAD23 gene, which is involved in excision repair of UV-damaged DNA, bears a ub-like domain at its amino terminus. This finding has presented an opportunity to define the functional significance of this domain. We show that deletion of the ub-like domain impairs the DNA repair function of RAD23 and that this domain can be functionally substituted by the authentic ubiquitin sequence. Surprisingly, RAD23 is highly stable, and the studies reported herein indicate that its ub-like domain does not mediate protein degradation. Thus, in RAD23 at least, the ub-like domain affects protein function in a nonproteolytic manner.


1993 ◽  
Vol 13 (12) ◽  
pp. 7757-7765 ◽  
Author(s):  
J F Watkins ◽  
P Sung ◽  
L Prakash ◽  
S Prakash

In eukaryotes, the posttranslational conjugation of ubiquitin to various cellular proteins marks them for degradation. Interestingly, several proteins have been reported to contain ubiquitin-like (ub-like) domains that are in fact specified by the DNA coding sequences of the proteins. The biological role of the ub-like domain in these proteins is not known; however, it has been proposed that this domain functions as a degradation signal rendering the proteins unstable. Here, we report that the product of the Saccharomyces cerevisiae RAD23 gene, which is involved in excision repair of UV-damaged DNA, bears a ub-like domain at its amino terminus. This finding has presented an opportunity to define the functional significance of this domain. We show that deletion of the ub-like domain impairs the DNA repair function of RAD23 and that this domain can be functionally substituted by the authentic ubiquitin sequence. Surprisingly, RAD23 is highly stable, and the studies reported herein indicate that its ub-like domain does not mediate protein degradation. Thus, in RAD23 at least, the ub-like domain affects protein function in a nonproteolytic manner.


1989 ◽  
Vol 9 (4) ◽  
pp. 1794-1798
Author(s):  
M van Duin ◽  
J van Den Tol ◽  
J H Hoeijmakers ◽  
D Bootsma ◽  
I P Rupp ◽  
...  

We report that the genes for the homologous Saccharomyces cerevisiae RAD10 and human ERCC-1 DNA excision repair proteins harbor overlapping antisense transcription units in their 3' regions. Since naturally occurring antisense transcription is rare in S. cerevisiae and humans (this is the first example in human cells), our findings indicate that antisense transcription in the ERCC-1-RAD10 gene regions represents an evolutionarily conserved feature.


2000 ◽  
Vol 268 (1) ◽  
pp. 210-215 ◽  
Author(s):  
Marcel Lombaerts ◽  
Jerrelyne I. Goeloe ◽  
Hans den Dulk ◽  
Jourica A. Brandsma ◽  
Jaap Brouwer

1985 ◽  
Vol 5 (2) ◽  
pp. 398-405 ◽  
Author(s):  
J S Rubin ◽  
V R Prideaux ◽  
H F Willard ◽  
A M Dulhanty ◽  
G F Whitmore ◽  
...  

The genes and gene products involved in the mammalian DNA repair processes have yet to be identified. Toward this end we made use of a number of DNA repair-proficient transformants that were generated after transfection of DNA from repair-proficient human cells into a mutant hamster line that is defective in the initial incision step of the excision repair process. In this report, biochemical evidence is presented that demonstrates that these transformants are repair proficient. In addition, we describe the molecular identification and cloning of unique DNA sequences closely associated with the transfected human DNA repair gene and demonstrate the presence of homologous DNA sequences in human cells and in the repair-proficient DNA transformants. The chromosomal location of these sequences was determined by using a panel of rodent-human somatic cell hybrids. Both unique DNA sequences were found to be on human chromosome 19.


Author(s):  
Mitsuoki Morimyo ◽  
Kazuei Mita ◽  
Etsuko Hongo ◽  
Tomoyasu Higashi ◽  
Kimihiko Sugaya ◽  
...  

1989 ◽  
Vol 9 (8) ◽  
pp. 3314-3322
Author(s):  
G M Cole ◽  
R K Mortimer

The Saccharomyces cerevisiae RAD54 gene is transcriptionally regulated by a broad spectrum of DNA-damaging agents. Induction of RAD54 by DNA-damaging agents is under positive control. Sequences responsible for DNA damage induction (the DRS element) lie within a 29-base-pair region from -99 to -70 from the most proximal transcription start site. This inducible promoter element is functionally separable from a poly(dA-dT) region immediately downstream which is required for constitutive expression. Deletions which eliminate induction of RAD54 transcription by DNA damage but do not affect constitutive expression have no effect on growth or survival of noninducible strains relative to wild-type strains in the presence of DNA-damaging agents. The DRS element is also not required for homothallic mating type switching, transcriptional induction of RAD54 during meiosis, meiotic recombination, or spontaneous or X-ray-induced mitotic recombination. We find no phenotype for a lack of induction of RAD54 message via the damage-inducible DRS, which raises significant questions about the physiology of DNA damage induction in S. cerevisiae.


Sign in / Sign up

Export Citation Format

Share Document