scholarly journals Transcriptome analysis of root transporters reveals participation of multiple gene families in the response to cation stress

2003 ◽  
Vol 35 (6) ◽  
pp. 675-692 ◽  
Author(s):  
Frans J. M. Maathuis ◽  
Victor Filatov ◽  
Pawel Herzyk ◽  
Gerard C. Krijger ◽  
Kristian B. Axelsen ◽  
...  
2021 ◽  
Vol 167 ◽  
pp. 1061-1071
Author(s):  
Mengyun Liu ◽  
Li Yang ◽  
Miaomiao Cai ◽  
Chong Feng ◽  
Zhimin Zhao ◽  
...  

Pathogens ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 312 ◽  
Author(s):  
Vivek Yadav ◽  
Zhongyuan Wang ◽  
Chunhua Wei ◽  
Aduragbemi Amo ◽  
Bilal Ahmed ◽  
...  

Pathogens hitting the plant cell wall is the first impetus that triggers the phenylpropanoid pathway for plant defense. The phenylpropanoid pathway bifurcates into the production of an enormous array of compounds based on the few intermediates of the shikimate pathway in response to cell wall breaches by pathogens. The whole metabolomic pathway is a complex network regulated by multiple gene families and it exhibits refined regulatory mechanisms at the transcriptional, post-transcriptional, and post-translational levels. The pathway genes are involved in the production of anti-microbial compounds as well as signaling molecules. The engineering in the metabolic pathway has led to a new plant defense system of which various mechanisms have been proposed including salicylic acid and antimicrobial mediated compounds. In recent years, some key players like phenylalanine ammonia lyases (PALs) from the phenylpropanoid pathway are proposed to have broad spectrum disease resistance (BSR) without yield penalties. Now we have more evidence than ever, yet little understanding about the pathway-based genes that orchestrate rapid, coordinated induction of phenylpropanoid defenses in response to microbial attack. It is not astonishing that mutants of pathway regulator genes can show conflicting results. Therefore, precise engineering of the pathway is an interesting strategy to aim at profitably tailored plants. Here, this review portrays the current progress and challenges for phenylpropanoid pathway-based resistance from the current prospective to provide a deeper understanding.


2008 ◽  
Vol 8 (1) ◽  
pp. 254 ◽  
Author(s):  
Görel Sundström ◽  
Tomas A Larsson ◽  
Dan Larhammar

2016 ◽  
pp. evw296 ◽  
Author(s):  
Joel Vizueta ◽  
Cristina Frías-López ◽  
Nuria Macías-Hernández ◽  
Miquel A. Arnedo ◽  
Alejandro Sánchez-Gracia ◽  
...  

Author(s):  
Angelika Voronova ◽  
Dainis Ruņģis

AbstractConifer genomes are large and stably diploid, in contrast to angiosperms, which are more variable both in genome size and ploidy. Conifer genomes are characterised by multiple gene families and pseudogenes, contain large inter-gene regions and a considerable proportion of repetitive sequences. All members of plant retrotransposon orders have been identified in gymnosperm genomes, however active elements have not been described. Investigation of transposable elements in Scots pine (Pinus sylvestris L.) could offer insights into transposon-mediated reorganisation under stress conditions in complex and ancient plant genomes. Nine Pinus sylvestris specific markers were developed to hypothetical long terminal repeats (LTRs) from differentially expressed retrotransposon-like fragments after heat stress and insect damage. Genetic diversity of 150 trees from a naturally regenerated pine stand was investigated using the IRAP method. The developed markers revealed high levels of genetic diversity and were able to distinguish subpopulations growing in long-term differential environmental conditions. Somaclonal variation was also investigated using these markers and polymorphic fragments were identified between ramets of Scots pine clones growing in two different plantations, possibly indicating evidence of recent transposition events. Sequencing of the polymorphic fragments identified two groups of sequences containing LTR sequences of an unknown retrotransposon with homology to the LTRs of the Copia-17-PAb-I element.


2021 ◽  
Author(s):  
Prem Kumar Dantu ◽  
Mrinalini Prasad ◽  
Rajiv Ranjan

AbstractPiper longum (Pipli; Piperaceae) is an important spice valued for its pungent alkaloids, especially piperine. Albeit, its importance, the mechanism of piperine biosynthesis is still poorly understood. The Next Generation Sequencing (NGS) for P. longum leaves, root and spikes was performed using Illumina platform, which generated 16901456, 54993496 and 22900035, respectively of high quality reads. In de novo assembly P. longum 173381 numbers of transcripts were analyzed. Analysis of transcriptome data from leaf, root and spike showed gene families that were involved in the biosynthetic pathway of piperine and other secondary metabolites. To validate differential expression of the identified genes, 27 genes were randomly selected to confirm the expression level by quantitative real time PCR (qRT-PCR) based on the up regulation and down regulation of differentially expressed genes obtained through comparative transcriptome analysis of leaves and spike of P. longum. With the help of UniProt database the function of all characterized genes was generated.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Tim M. van Leeuwe ◽  
Mark Arentshorst ◽  
Tim Ernst ◽  
Ebru Alazi ◽  
Peter J. Punt ◽  
...  

Abstract Background CRISPR/Cas9 mediated genome editing has expedited the way of constructing multiple gene alterations in filamentous fungi, whereas traditional methods are time-consuming and can be of mutagenic nature. These developments allow the study of large gene families that contain putatively redundant genes, such as the seven-membered family of crh-genes encoding putative glucan–chitin crosslinking enzymes involved in cell wall biosynthesis. Results Here, we present a CRISPR/Cas9 system for Aspergillus niger using a non-integrative plasmid, containing a selection marker, a Cas9 and a sgRNA expression cassette. Combined with selection marker free knockout repair DNA fragments, a set of the seven single knockout strains was obtained through homology directed repair (HDR) with an average efficiency of 90%. Cas9–sgRNA plasmids could effectively be cured by removing selection pressure, allowing the use of the same selection marker in successive transformations. Moreover, we show that either two or even three separate Cas9–sgRNA plasmids combined with marker-free knockout repair DNA fragments can be used in a single transformation to obtain double or triple knockouts with 89% and 38% efficiency, respectively. By employing this technique, a seven-membered crh-gene family knockout strain was acquired in a few rounds of transformation; three times faster than integrative selection marker (pyrG) recycling transformations. An additional advantage of the use of marker-free gene editing is that negative effects of selection marker gene expression are evaded, as we observed in the case of disrupting virtually silent crh family members. Conclusions Our findings advocate the use of CRISPR/Cas9 to create multiple gene deletions in both a fast and reliable way, while simultaneously omitting possible locus-dependent-side-effects of poor auxotrophic marker expression.


Sign in / Sign up

Export Citation Format

Share Document