scholarly journals Adrenomedullin stimulates cyclic AMP production in the airway epithelial cells of guinea-pigs and in the human epithelial cell line

1999 ◽  
Vol 48 (1) ◽  
pp. 53-59 ◽  
Author(s):  
Takashi Kawaguchi ◽  
Hiroshi Kanazawa ◽  
Kazuto Hirata ◽  
Naotsugu Kurihara ◽  
Junichi Yoshikawa
1998 ◽  
Vol 275 (2) ◽  
pp. L372-L378 ◽  
Author(s):  
Karissa K. Adkins ◽  
Tricia D. Levan ◽  
Roger L. Miesfeld ◽  
John W. Bloom

Inflammation plays a central role in the pathogenesis of asthma. Glucocorticoids are first-line anti-inflammatory therapy in the treatment of asthma and are effective inhibitors of inflammatory cytokines. Clinical data demonstrate that granulocyte-macrophage colony-stimulating factor (GM-CSF) production by airway epithelial cells may be an important target of inhaled glucocorticoid therapy. We examined the regulatory mechanisms of GM-CSF expression by interleukin-1β (IL-1β) and the synthetic glucocorticoid dexamethasone in the BEAS-2B human bronchial epithelial cell line. IL-1β stimulation resulted in a 15-fold induction of GM-CSF protein, which was associated with a corresponding 47-fold maximal induction of GM-CSF mRNA levels. Treatment with the transcriptional inhibitor actinomycin D before IL-1β stimulation completely abolished induction of GM-CSF mRNA, whereas incubation with cycloheximide had no effect. Taken together, these data demonstrate that IL-1β induction of GM-CSF is mediated through transcriptional mechanisms. Dexamethasone treatment of BEAS-2B cells produced an 80% inhibition of IL-1β-induced GM-CSF protein and a 51% inhibition of GM-CSF mRNA. GM-CSF mRNA was rapidly degraded in these cells, and dexamethasone treatment did not significantly affect this decay rate. We conclude that, in the BEAS-2B bronchial epithelial cell line, IL-1β induction and dexamethasone repression of GM-CSF expression are mediated predominantly through transcriptional mechanisms.


1997 ◽  
Vol 272 (3) ◽  
pp. L512-L520 ◽  
Author(s):  
S. Becker ◽  
W. Reed ◽  
F. W. Henderson ◽  
T. L. Noah

Infection of airway epithelial cells with respiratory syncytial virus (RSV) results in the production of a restricted number of cytokines, which may modulate the inflammatory response to infection. To get a better understanding of epithelial cell-mediated inflammatory processes in RSV disease, the aim of the present study was to identify the production of mononuclear cell/eosinophil/mast cell inflammatory chemokines [monocyte chemotactic protein (MCP)-1, MCP-3, macrophage inflammatory protein-1beta, and RANTES] during productive RSV infection in airway epithelial cells. Normal human primary bronchial epithelial cell cultures, nasal epithelial cell explants, and the BEAS-2B airway epithelial cell line were inoculated with RSV, and chemokine induction was assessed during the phase of logarithmic increase in infectious virus production. Only RANTES was found to increase in epithelial cell cultures in an infection-dependent manner. Furthermore, RANTES was released only by RSV-producing cells. To determine whether RANTES was induced by RSV infection in vivo, RANTES was measured in nasal lavage fluids (NLF) from children with RSV-positive and RSV-negative upper respiratory infection and children when they were well. RANTES was increased significantly during RSV infection (128 +/- 38 pg/ml NFL) compared with non-RSV infection (42 +/- 12 pg/ml NFL) and with asymptomatic baseline (13 +/- 4 ng/ml NFL) in the same children. Because RANTES is an effective eosinophil and memory T cell chemoattractant and activator and because eosinophil-dominated inflammation is a hallmark of asthmatic airways, RANTES may play a role in the pathogenesis of RSV-induced exacerbations of airway reactivity and wheezing.


2007 ◽  
Vol 293 (5) ◽  
pp. L1208-L1218 ◽  
Author(s):  
Ewa Ostrowska ◽  
Elena Sokolova ◽  
Georg Reiser

Protease-activated receptors (PARs) are involved in the contribution of airway epithelial cells to the development of inflammation by release of pro- and anti-inflammatory mediators. Here, we evaluated in epithelial cells the influence of LPS and continuous PAR activation on PAR expression level and the release of the proinflammatory chemokine IL-8. We studied primary human small airway epithelial cells and two airway epithelial cell lines, A549 and HBE cells. LPS specifically upregulated expression of PAR-2 but not of PAR-1. Exposure of epithelial cells to PAR-1 or PAR-2 agonists increased the PAR-1 expression level. The PAR-2 agonist exhibited higher potency than PAR-1 activators. However, the combined exposure of epithelial cells to LPS and PAR agonists abrogated the PAR-1 upregulation. The PAR-2 expression level was also upregulated after exposure to PAR-1 or PAR-2 agonists. This elevation was higher than the effect of PAR agonists on the PAR-1 level. In contrast to the PAR-1 level, the PAR-2 level remained elevated under concomitant stimulation with LPS and PAR-2 agonist. Furthermore, activation of PAR-2, but not of PAR-1, caused production of IL-8 from the epithelial cells. Interestingly, both in the epithelial cell line and in primary epithelial cells, there was a potentiation of the stimulation of the IL-8 synthesis and release by PAR-2 agonist together with LPS. In summary, these results underline the important role of PAR-2 in human lung epithelial cells. Moreover, our study shows an intricate interplay between LPS and PAR agonists in affecting PAR regulation and IL-8 production.


mSphere ◽  
2018 ◽  
Vol 3 (5) ◽  
Author(s):  
Yinghui Rong ◽  
Jennifer Westfall ◽  
Dylan Ehrbar ◽  
Timothy LaRocca ◽  
Nicholas J. Mantis

ABSTRACTInhalation of ricin toxin is associated with the onset of acute respiratory distress syndrome (ARDS), characterized by hemorrhage, inflammatory exudates, and tissue edema, as well as the nearly complete destruction of the lung epithelium. Here we report that the Calu-3 human airway epithelial cell line is relatively impervious to the effects of ricin, with little evidence of cell death even upon exposure to microgram amounts of toxin. However, the addition of exogenous solubletumornecrosisfactor (TNF)-relatedapoptosis-inducingligand (TRAIL; CD253) dramatically sensitized Calu-3 cells to ricin-induced apoptosis. Calu-3 cell killing in response to ricin and TRAIL exposure was partially inhibited by caspase-8 and caspase-3/7 inhibitors, consistent with involvement of extrinsic apoptotic pathways in cell death. We employed nCounter Technology to define the transcriptional response of Calu-3 cells to ricin, TRAIL, and the combination of ricin plus TRAIL. An array of genes associated with inflammation and cell death were significantly upregulated upon treatment with ricin toxin and were further amplified upon addition of TRAIL. Of particular note was interleukin-6 (IL-6), whose expression in Calu-3 cells increased 300-fold upon ricin treatment and more than 750-fold upon ricin and TRAIL treatment. IL-6 secretion by Calu-3 cells was confirmed by cytometric bead array analysis. On the basis of these finding, we speculate that the severe airway epithelial cell damage observed in animal models following ricin exposure is a result of a positive-feedback loop driven by proinflammatory cytokines such as TRAIL and IL-6.IMPORTANCERicin toxin is a biothreat agent that is particularly damaging to lung tissue following inhalation. A hallmark of ricin exposure is widespread inflammation and concomitant destruction of the airway epithelium. In this study, we investigated the possible interaction between ricin and known proinflammatory cytokines associated with lung tissue. Using an established human airway epithelial cell line, we demonstrate that epithelial cell killing by ricin is significantly enhanced in the presence of the proinflammatory cytokine known as TRAIL (CD253). Moreover, epithelial cells that are simultaneously exposed to ricin and TRAIL produced large amounts of secondary proinflammatory signals, including IL-6, which in the context of the lung would be expected to exacerbate toxin-induced tissue damage. Our results suggest that therapies designed to neutralize proinflammatory cytokines such as TRAIL and IL-6 may limit the bystander damage associated with ricin exposure.


2013 ◽  
Vol 91 (6) ◽  
pp. 449-454 ◽  
Author(s):  
Yu-Wei Liao ◽  
Xing-Mao Wu ◽  
Jia Jia ◽  
Xiao-Lei Wu ◽  
Hong Tao ◽  
...  

The airway epithelial barrier function is important in maintaining the homeostasis in the body. A number of airway disorders are associated with the epithelial barrier dysfunction. The present study aims to elucidate a possible mechanism by which the proteolytic allergens compromise the epithelial barrier function. The airway epithelial cell line, RPMI 2650 cells (Rp cells) and kidney epithelial cell line, MDCK cells, were cultured to be monolayers and used as an in vitro epithelial barrier model. House dust mite antigen, Der P1 (Der) was used as an antigen that has the proteolytic property. The epithelial barrier permeability and transepithelial resistance (TER) were used as the indicators of epithelial barrier function. Both epithelial cell lines could endocytose Der in the culture. Some of the Der was transported across the epithelial barrier to the basal chambers of the Transwells without affecting the TER. The endocytic Der could suppress the expression of ubiquitin E3 lases A20 and further interfered with the fusion of endosome/lysosome in the epithelial cells. Mite antigen, Der, can interfere with the fusion of endosome/lysosome in epithelial cells to induce the epithelial barrier dysfunction.


2003 ◽  
Vol 284 (2) ◽  
pp. L307-L315 ◽  
Author(s):  
Jing Li ◽  
Xa Dwight Johnson ◽  
Svetlana Iazvovskaia ◽  
Alan Tan ◽  
Anning Lin ◽  
...  

Ligation of the asialoGM1 Pseudomonas aeruginosa pilin receptor has been demonstrated to induce IL-8 expression in airway epithelial cells via an NF-κB-dependent pathway. We examined the signaling pathways required for asialoGM1-mediated NF-κB activation in IB3 cells, a human bronchial epithelial cell line derived from a cystic fibrosis (CF) patient, and C-38 cells, the rescued cell line that expresses a functional CF transmembrane regulator. Ligation of the asialoGM1 receptor with specific antibody induced greater IL-8 expression in IB3 cells than C-38 cells, consistent with the greater density of asialoGM1 receptors in CF phenotype cells. AsialoGM1-mediated activation of NF-κB, IκB kinase (IKK), and ERK was also greater in IB3 cells. With the use of genetic inhibitors, we found that IKK-β and NF-κB-inducing kinase are required for maximal NF-κB transactivation and transcription from the IL-8 promoter. Finally, although ERK activation was required for maximal asialoGM1-mediated IL-8 expression, inhibition of ERK signaling had no effect on IKK or NF-κB activation, suggesting that ERK regulates IL-8 expression in an NF-κB-independent manner.


1992 ◽  
Vol 284 (3) ◽  
pp. 725-732 ◽  
Author(s):  
A S Pollock ◽  
D H Lovett

We used an enhancerless U3 mutant retroviral vector to deliver chimeras of the phosphoenolpyruvate carboxykinase (PEPCK) promoter region to a renal epithelial cell line capable of expressing PEPCK mRNA. Chimeras consisting of the PEPCK promoter and chloramphenicol acetyltransferase, neomycin phosphotransferase or human growth hormone genes were expressed after viral infection of the NRK52E renal epithelial cell line. Virus-delivered sequences in which the direction of PEPCK promoter transcription was antegrade to the normal direction of the long terminal repeat (LTR)-initiated transcription correctly upon stimulation with dexamethasone or 8-bromo cyclic AMP and upon lowering of the extracellular pH. Fluorescent primer extension in situ using primers specific for virus-delivered sequences of antegrade constructs indicated that a large fraction of NRK52E cells could be infected by co-cultivation with virus-producing psi-2 cells without G418 selection. Virus-delivered constructs whose orientation was opposite to that of the LTRs were expressed at very low levels, with transcripts detectable by PCR only in RNA from cyclic AMP-treated cells. Using reverse transcription/PCR, we demonstrated that the chimeric transcripts were from the internal PEPCK promoter rather than a functional or reconstituted Moloney LTR. PEPCK-reporter chimeras delivered by retroviral vectors demonstrated a level of expression more consistent with the level of expression of the native PEPCK gene than did transfected chimeras. This expression system should prove useful for studies of the physiological modulation of gene expression in renal tissues.


Sign in / Sign up

Export Citation Format

Share Document