Amphetamine and cocaine do not increase Narp expression in rat ventral tegmental area, nucleus accumbens or prefrontal cortex, but Narp may contribute to individual differences in responding to a novel environment

2002 ◽  
Vol 15 (12) ◽  
pp. 2027-2036 ◽  
Author(s):  
W. Lu ◽  
M. Marinelli ◽  
D. Xu ◽  
P. F. Worley ◽  
M. E. Wolf
Author(s):  
Imre Kalló ◽  
Azar Omrani ◽  
Frank J. Meye ◽  
Han de Jong ◽  
Zsolt Liposits ◽  
...  

AbstractOrexin neurons are involved in homeostatic regulatory processes, including arousal and feeding, and provide a major input from the hypothalamus to the ventral tegmental area (VTA) of the midbrain. VTA neurons are a central hub processing reward and motivation and target the medial prefrontal cortex (mPFC) and the shell part of nucleus accumbens (NAcs). We investigated whether subpopulations of dopamine (DA) neurons in the VTA projecting either to the mPFC or the medial division of shell part of nucleus accumbens (mNAcs) receive differential input from orexin neurons and whether orexin exerts differential electrophysiological effects upon these cells. VTA neurons projecting to the mPFC or the mNAcs were traced retrogradely by Cav2-Cre virus and identified by expression of yellow fluorescent protein (YFP). Immunocytochemical analysis showed that a higher proportion of all orexin-innervated DA neurons projected to the mNAcs (34.5%) than to the mPFC (5.2%). Of all sampled VTA neurons projecting either to the mPFC or mNAcs, the dopaminergic (68.3 vs. 79.6%) and orexin-innervated DA neurons (68.9 vs. 64.4%) represented the major phenotype. Whole-cell current clamp recordings were obtained from fluorescently labeled neurons in slices during baseline periods and bath application of orexin A. Orexin similarly increased the firing rate of VTA dopamine neurons projecting to mNAcs (1.99 ± 0.61 Hz to 2.53 ± 0.72 Hz) and mPFC (0.40 ± 0.22 Hz to 1.45 ± 0.56 Hz). Thus, the hypothalamic orexin system targets mNAcs and to a lesser extent mPFC-projecting dopaminergic neurons of the VTA and exerts facilitatory effects on both clusters of dopamine neurons.


2020 ◽  
Vol 133 (2) ◽  
pp. 377-392
Author(s):  
Gaolin Qiu ◽  
Ying Wu ◽  
Zeyong Yang ◽  
Long Li ◽  
Xiaona Zhu ◽  
...  

Background Dexmedetomidine induces a sedative response that is associated with rapid arousal. To elucidate the underlying mechanisms, the authors hypothesized that dexmedetomidine increases the activity of dopaminergic neurons in the ventral tegmental area, and that this action contributes to the unique sedative properties of dexmedetomidine. Methods Only male mice were used. The activity of ventral tegmental area dopamine neurons was measured by a genetically encoded Ca2+ indicator and patch-clamp recording. Dopamine neurotransmitter dynamics in the medial prefrontal cortex and nucleus accumbens were measured by a genetically encoded dopamine sensor. Ventral tegmental area dopamine neurons were inhibited or activated by a chemogenetic approach, and the depth of sedation was estimated by electroencephalography. Results Ca2+ signals in dopamine neurons in the ventral tegmental area increased after intraperitoneal injection of dexmedetomidine (40 μg/kg; dexmedetomidine, 16.917 [14.882; 21.748], median [25%; 75%], vs. saline, –0.745 [–1.547; 0.359], normalized data, P = 0.001; n = 6 mice). Dopamine transmission increased in the medial prefrontal cortex after intraperitoneal injection of dexmedetomidine (40 μg/kg; dexmedetomidine, 10.812 [9.713; 15.104], median [25%; 75%], vs. saline, –0.498 [–0.664; –0.355], normalized data, P = 0.001; n = 6 mice) and in the nucleus accumbens (dexmedetomidine, 8.543 [7.135; 11.828], median [25%; 75%], vs. saline, –0.329 [–1.220; –0.047], normalized data, P = 0.001; n = 6 mice). Chemogenetic inhibition or activation of ventral tegmental area dopamine neurons increased or decreased slow waves, respectively, after intraperitoneal injection of dexmedetomidine (40 μg/kg; delta wave: two-way repeated measures ANOVA, F[2, 33] = 8.016, P = 0.002; n = 12 mice; theta wave: two-way repeated measures ANOVA, F[2, 33] = 22.800, P < 0.0001; n = 12 mice). Conclusions Dexmedetomidine activates dopamine neurons in the ventral tegmental area and increases dopamine concentrations in the related forebrain projection areas. This mechanism may explain rapid arousability upon dexmedetomidine sedation. Editor’s Perspective What We Already Know about This Topic What This Article Tells Us That Is New


2019 ◽  
pp. 835-844
Author(s):  
L. CHEN ◽  
X.-K. GONG ◽  
C.-L. LENG ◽  
B.-M. MA ◽  
Q. RU ◽  
...  

Opiate addiction has a high rate of relapse. The accumulating evidence shows that electroacupuncture (EA) may be effective for the treatment of opiate relapse. However, the change of expression of CB1-Rs and CB2-Rs involve in 2Hz EA anti-relapse pathway is still unclear. To explore the changes of expression of CB1-Rs and CB2-Rs, heroin self-administration (SA) model rats were adopted and treated using 2Hz EA. The expressions of CB1-Rs and CB2-Rs were observed using immunohistochemistry method. The results showed that, compared with the control group, active pokes in the heroin-addicted group increased, while the active pokes decreased significantly in 2Hz EA group compared with heroin-addicted group. Correspondingly, the expression of CB1-Rs in prefrontal cortex (PFC), hippocampus (Hip), nucleus accumbens (NAc) and ventral tegmental area (VTA) all increased significantly while the expression of CB2-Rs in those relapse-relevant brain regions decreased obviously in heroin-addicted group when compared with the control group. In addition, the expression of CB1-Rs obviously decreased in the 2Hz EA group while the expression of CB2-Rs in those relapse-relevant brain regions increased significantly when compared with the heroin-addicted group. It indicated that 2Hz EA could attenuate the heroin-evoked seeking behaviors effectively. The anti-relapse effects of 2Hz EA might be related to the decrease of CB1-Rs and increase of CB2-Rs expression in relapse-relevant brain regions of heroin SA rats.


Sign in / Sign up

Export Citation Format

Share Document