In Vitro Effects of a Chlorhexidine Controlled Delivery System

2003 ◽  
Vol 27 (5) ◽  
pp. 486-491 ◽  
Author(s):  
Carolina Ferreira Franco ◽  
André Luiz Pataro ◽  
Leandra Cristina Ribeiro E Souza ◽  
Vagner Rodrigues Santos ◽  
María Esperanza Cortés ◽  
...  
1997 ◽  
Vol 47 (1) ◽  
pp. 1-11 ◽  
Author(s):  
J.R Zingerman ◽  
J.R Cardinal ◽  
R.T Chern ◽  
J Holste ◽  
J.B Williams ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Leslie Raphael de Moura Ferraz ◽  
Alinne Élida Gonçalves Alves Tabosa ◽  
Débora Dolores Souza da Silva Nascimento ◽  
Aline Silva Ferreira ◽  
Victor de Albuquerque Wanderley Sales ◽  
...  

Abstract Chagas disease (CD), caused by the flagellate protozoan Trypanosoma cruzi, is one of the major public health problems in developing countries. Benznidazole (BNZ) is the only drug available for CD treatment in most countries, however, it presents high toxicity and low bioavailability. To address these problems this study used Zeolitic Imidazolate Framework-8 (ZIF-8), which has garnered considerable attention due to its potential applications, enabling the controlled delivery of drugs. The present work developed and characterized a BNZ@ZIF-8 system, and the modulation of BNZ release from the ZIF-8 framework was evaluated through the in vitro dialysis release method under sink conditions at different pH values. Moreover, the in vitro evaluation of cell viability and cytotoxicity by MTT assay were also performed. The dissolution studies corroborated that a pH sensitive Drug Delivery System capable of vectorizing the release of BNZ was developed, may leading to the improvement in the bioavailability of BNZ. The MTT assay showed that no statistically significant toxic effects occurred in the developed system, nor significant effects on cell viability.


2002 ◽  
Vol 14 (5) ◽  
pp. 307 ◽  
Author(s):  
Daniele Vigo ◽  
Massimo Faustini ◽  
Maria Luisa Torre ◽  
Alessandro Pecile ◽  
Simona Villani ◽  
...  

A technology for encapsulation of swine semen in barium alginate and protamine alginate has recently been proposed for the controlled release of the spermatozoa, thus reducing the number of instrumental inseminations required. Controlled-release capsules containing swine spermatozoa were prepared by adding saturated BaCl2 solution to ejaculate and dropping the resulting suspension into a sodium alginate solution, leading to the formation of barium alginate capsules. A second type of capsule was obtained by cross-linking the barium alginate with protamine sulfate. Two types of membrane were thus obtained: barium alginate gel and a protamine cross-linked alginate membrane. Morphological (scanning electron microscopy and transmission electron microscopy), functional (motility, membrane integrity and in vitro fertilization test) and technological (capsule structure and weight) approaches were used to characterize the encapsulated spermatozoa and the controlled-delivery system. No differences in terms of morphological and functional characteristics (acrosome integrity and spermatozoa motility) between free and encapsulated semen were found. The technological process did not compromise in vitro fertilization potency of the spermatazoa, although seasonal variability was found. The capsule weight was related to either the pH of the semen or the season. This study represents the starting point for the development of further investigations into the storage and release kinetics of cells from the capsules and for the development of an in vivo fertilization protocol.


Author(s):  
Nayanna Lana Soares Fernandes ◽  
Ingrid Andrade Meira ◽  
Vanessa Feitosa Alves ◽  
Fabio Correia Sampaio ◽  
Andressa Feitosa Bezerra de Oliveira

Planta Medica ◽  
2012 ◽  
Vol 78 (11) ◽  
Author(s):  
HM Lee ◽  
TG Ahn ◽  
CW Kim ◽  
HJ An
Keyword(s):  

1990 ◽  
Vol 64 (03) ◽  
pp. 402-406 ◽  
Author(s):  
M D Oethinger ◽  
E Seifried

SummaryThe present in vitro study investigated dose-, time- and temperature-dependent effects of two-chain urokinase plasminogen activato(u-PA, urokinase) on normal citrated plasma. When 10 μg/ml u-PA wereadded to pooled normal plasma and incubated for 30 min at an ambient temperature (25° C), α2-antiplas-min decreased to 8% of the control value. Incubation on ice yielded a decrease to 45% of control,whereas α2-antiplasmin was fully consumed at 37° C. Fibrinogen and plasminogen fell to 46% and 39%, respectively, after a 30 min incubation at 25° C. Thrombin time prolonged to 190% of control.Various inhibitors were studied with respect to their suitability and efficacy to prevent these in vitro effects. Aprotinin exhibited a good protective effect on fibrinogen at concentrations exceeding 500 KlU/ml plasma. Its use, however, was limited due to interferences with some haemostatic assays. We could demonstrate that L-Glutamyl-L-Glycyl-L-Arginyl chloromethyl ketone (GGACK) and a specific polyclonal anti-u-PA-antibody (anti-u-PA-IgG) effectively inhibited urokinase-induced plasmin generation without interfering with haemostatic assays. The anti-u-PA-antibody afforded full protection ofα2-antiplasmin at therapeutic levels of u-PA.It is concluded that u-PA in plasma samples from patients during thrombolytic therapy may induce in vitro effects which should be prevented by the use of a suitable inhibitor such as GGACK or specific anti-u-PA-antibody.


Sign in / Sign up

Export Citation Format

Share Document