scholarly journals Fast Oscillations and Epilepsy

2003 ◽  
Vol 3 (3) ◽  
pp. 77-79 ◽  
Author(s):  
Roger D. Traub

Very fast oscillations, 80 Hz and greater (designated here VFOs or “ripples”) have been observed in the hippocampus and neocortex, under a variety of conditions that are summarized briefly later. VFOs may be of relevance for normal brain function ( 1 – 4 ) and could also be of relevance in the initiation of focal epileptic seizures ( 5 , 6 ). To determine whether such relevance indeed exists, an understanding of the cellular mechanisms of VFOs is essential. For purposes of this commentary, I shall assume that all forms of VFOs are governed by a few common basic underlying principles. Future experimental data may show that assumption to be false, but for now, the assumption at least allows the formulation of straightforward hypotheses that could stimulate experiments.

2012 ◽  
Vol 33 (4) ◽  
pp. e65-e65
Author(s):  
M. del Mar Carmona Abellán ◽  
M. Murie Fernández ◽  
P. Esteve Belloch

2015 ◽  
Vol 86 (11) ◽  
pp. e4.155-e4
Author(s):  
Ray Wynford-Thomas ◽  
Rob Powell

Just as ‘no man is an island’, despite its misleading name, the insula is not an island. Sitting deeply within the cerebrum, the insular cortex and its connections play an important role in both normal brain function and seizure generation. Stimulating specific areas of the insula can produce somatosensory, viscerosensory, somatomotor and visceroautonomic symptoms, as well as effects on speech processing and pain. Insular onset seizures are rare, but may mimic both temporal and extra-temporal epilepsy and if not recognised, may lead to failure of epilepsy surgery. We therefore highlight the semiology of insular epilepsy by discussing three cases with different auras. Insular onset seizures can broadly be divided into three main types both anatomically and according to seizure semiology:1. Seizures originating in the antero-inferior insula present with laryngeal constriction, along with visceral and gustatory auras (similar to those originating in medial temporal structures).2. Antero-superior onset seizures can have a silent onset, but tend to propagate rapidly to motor areas causing focal motor or hypermotor seizures.3. Seizures originating in the posterior insula present with contralateral sensory symptoms.


2019 ◽  
Vol 8 (3) ◽  
pp. 613-618

Neurochemical transmitters in the brain are fundamental to normal brain function and this investigation aims to introduce a study on the center of neuroscientific through an account of language development which conducts human speech mechanism using theoretical methods. In the process of this work, new understanding has been gained from the neurochemistry of several important neurotransmitters of dopamine (DA), epinephrine (EN), norepinephrine (NE), histamine (HA) and serotonin (ST) in brain by Monte Carlo simulation (MC) which uses the increased temperature to the potential energy of the neurochemicals in the brain considering the geometry optimization of the compounds as an additional conformational level. Moreover, the results of optimized DA, EN, NE, HA, ST neurochemical transmitters by running the physicochemical parameters as a practical model using Gaussian 09 program package can approve the twisting of language-brain due to these structures using density electron deliverers. The most stable of these compounds through the active sites of nitrogen and oxygen atoms has illustrated the best optimized position for localizing the structure through delivery technique in the brain to activate the center of learning a language as a simulated model. So, the best results with the calculated amounts conduct us to analyze the perspective of language learning process and enhancing this ability.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Gilad D Evrony ◽  
Eunjung Lee ◽  
Peter J Park ◽  
Christopher A Walsh

Whether somatic mutations contribute functional diversity to brain cells is a long-standing question. Single-neuron genomics enables direct measurement of somatic mutation rates in human brain and promises to answer this question. A recent study (<xref ref-type="bibr" rid="bib65">Upton et al., 2015</xref>) reported high rates of somatic LINE-1 element (L1) retrotransposition in the hippocampus and cerebral cortex that would have major implications for normal brain function, and suggested that these events preferentially impact genes important for neuronal function. We identify aspects of the single-cell sequencing approach, bioinformatic analysis, and validation methods that led to thousands of artifacts being interpreted as somatic mutation events. Our reanalysis supports a mutation frequency of approximately 0.2 events per cell, which is about fifty-fold lower than reported, confirming that L1 elements mobilize in some human neurons but indicating that L1 mosaicism is not ubiquitous. Through consideration of the challenges identified, we provide a foundation and framework for designing single-cell genomics studies.


2013 ◽  
pp. 83-88 ◽  
Author(s):  
Martin Ingvar ◽  
Predrag Petrovic ◽  
Karin Jensen

2017 ◽  
Vol 39 (04) ◽  
pp. 261-270
Author(s):  
Daniel Damiani ◽  
Anna Maria Nascimento ◽  
Leticia Kühl Pereira

AbstractIn 1909, Korbinian Brodmann described 52 functional brain areas, 43 of them found in the human brain. More than a century later, his devoted functional map was incremented by Glasser et al in 2016, using functional nuclear magnetic resonance imaging techniques to propose the existence of 180 functional areas in each hemisphere, based on their cortical thickness, degree of myelination (cortical myelin content), neuronal interconnection, topographic organization, multitask answers, and assessment in their resting state. This opens a huge possibility, through functional neuroanatomy, to understand a little more about normal brain function and its functional impairment in the presence of a disease.


2000 ◽  
Vol 12 (1-2) ◽  
pp. 53-67 ◽  
Author(s):  
Daniela Montaldi ◽  
Andrew R. Mayes

The last ten years have seen the development and expansion of an exciting new field of neuroscientific research; functional mapping of the human brain. Whilst many of the questions addressed by this area of research could be answered using SPECT, relatively few SPECT activation studies of this kind have been carried out. The present paper combines an evaluation of SPECT procedures used for neuroactivation studies, and their comparison with other imaging modalities (i.e., PET and fMRI), with a review of SPECT neuroactivation studies that yield information concerning normal brain function with a particular emphasis on the brain activations produced by memory processing. The paper aims to describe and counter common misunderstandings regarding potential limitations of the SPECT technique, to explain and illustrate which SPECT procedures best fulfill the requirements of a neuroactivation study, and how best to obtain information about normal brain function (whether using normal healthy subjects or patients) and finally to highlight SPECT’s potential future role in the functional mapping of the human brain.


Sign in / Sign up

Export Citation Format

Share Document