Amyloid β-Peptide and Central Cholinergic Neurons: Involvement in Normal Brain Function and Alzheimer’s Disease Pathology

Author(s):  
Satyabrata Karn ◽  
Z. Wei ◽  
David MacTavish ◽  
Doreen Kabogo ◽  
Mee-Sook Song ◽  
...  
2016 ◽  
Vol 13 (11) ◽  
pp. 1200-1207 ◽  
Author(s):  
Amanda M. Di Battista ◽  
Nicolette M. Heinsinger ◽  
G. William Rebeck

2014 ◽  
Vol 56 ◽  
pp. 99-110 ◽  
Author(s):  
David Allsop ◽  
Jennifer Mayes

One of the hallmarks of AD (Alzheimer's disease) is the formation of senile plaques in the brain, which contain fibrils composed of Aβ (amyloid β-peptide). According to the ‘amyloid cascade’ hypothesis, the aggregation of Aβ initiates a sequence of events leading to the formation of neurofibrillary tangles, neurodegeneration, and on to the main symptom of dementia. However, emphasis has now shifted away from fibrillar forms of Aβ and towards smaller and more soluble ‘oligomers’ as the main culprit in AD. The present chapter commences with a brief introduction to the disease and its current treatment, and then focuses on the formation of Aβ from the APP (amyloid precursor protein), the genetics of early-onset AD, which has provided strong support for the amyloid cascade hypothesis, and then on the development of new drugs aimed at reducing the load of cerebral Aβ, which is still the main hope for providing a more effective treatment for AD in the future.


2018 ◽  
Vol 15 (6) ◽  
pp. 504-510 ◽  
Author(s):  
Sara Sanz-Blasco ◽  
Maria Calvo-Rodríguez ◽  
Erica Caballero ◽  
Monica Garcia-Durillo ◽  
Lucia Nunez ◽  
...  

Objectives: Epidemiological data suggest that non-steroidal anti-inflammatory drugs (NSAIDs) may protect against Alzheimer's disease (AD). Unfortunately, recent trials have failed in providing compelling evidence of neuroprotection. Discussion as to why NSAIDs effectivity is uncertain is ongoing. Possible explanations include the view that NSAIDs and other possible disease-modifying drugs should be provided before the patients develop symptoms of AD or cognitive decline. In addition, NSAID targets for neuroprotection are unclear. Both COX-dependent and independent mechanisms have been proposed, including γ-secretase that cleaves the amyloid precursor protein (APP) and yields amyloid β peptide (Aβ). Methods: We have proposed a neuroprotection mechanism for NSAIDs based on inhibition of mitochondrial Ca2+ overload. Aβ oligomers promote Ca2+ influx and mitochondrial Ca2+ overload leading to neuron cell death. Several non-specific NSAIDs including ibuprofen, sulindac, indomethacin and Rflurbiprofen depolarize mitochondria in the low µM range and prevent mitochondrial Ca2+ overload induced by Aβ oligomers and/or N-methyl-D-aspartate (NMDA). However, at larger concentrations, NSAIDs may collapse mitochondrial potential (ΔΨ) leading to cell death. Results: Accordingly, this mechanism may explain neuroprotection at low concentrations and damage at larger doses, thus providing clues on the failure of promising trials. Perhaps lower NSAID concentrations and/or alternative compounds with larger dynamic ranges should be considered for future trials to provide definitive evidence of neuroprotection against AD.


2010 ◽  
Vol 98 (3) ◽  
pp. 170a
Author(s):  
Ana M. Mata ◽  
María Berrocal ◽  
Daniel Marcos ◽  
M. Rosario Sepúlveda

2021 ◽  
Vol 29 (3) ◽  
pp. 236-243
Author(s):  
Perihan Gürbüz ◽  
Alim Hüseyin Dokumacı ◽  
Miyase Gözde Gündüz ◽  
Concepcion Perez ◽  
Fatih Göger ◽  
...  

2021 ◽  
pp. 1-20
Author(s):  
Yang Yu ◽  
Yang Gao ◽  
Bengt Winblad ◽  
Lars Tjernberg ◽  
Sophia Schedin Weiss

Background: Processing of the amyloid-β protein precursor (AβPP) is neurophysiologically important due to the resulting fragments that regulate synapse biology, as well as potentially harmful due to generation of the 42 amino acid long amyloid β-peptide (Aβ 42), which is a key player in Alzheimer’s disease. Objective: Our aim was to clarify the subcellular locations of the amyloidogenic AβPP processing in primary neurons, including the intracellular pools of the immediate substrate, AβPP C-terminal fragment (APP-CTF) and the product (Aβ 42). To overcome the difficulties of resolving these compartments due to their small size, we used super-resolution microscopy. Methods: Mouse primary hippocampal neurons were immunolabelled and imaged by stimulated emission depletion (STED) microscopy, including three-dimensional, three-channel imaging and image analyses. Results: The first (β-secretase) and second (γ-secretase) cleavages of AβPP were localized to functionally and distally distinct compartments. The β-secretase cleavage was observed in early endosomes, where we were able to show that the liberated N- and C-terminal fragments were sorted into distinct vesicles budding from the early endosomes in soma. Lack of colocalization of Aβ 42 and APP-CTF in soma suggested that γ-secretase cleavage occurs in neurites. Indeed, APP-CTF was, in line with Aβ 42 in our previous study, enriched in the presynapse but absent from the postsynapse. In contrast, full-length AβPP was not detected in either the pre- or the postsynaptic side of the synapse. Furthermore, we observed that endogenously produced and endocytosed Aβ 42 were localized in different compartments. Conclusion: These findings provide critical super-resolved insight into amyloidogenic AβPP processing in primary neurons.


2021 ◽  
Vol 80 (4) ◽  
pp. 1439-1450
Author(s):  
Najla Jouini ◽  
Zakaria Saied ◽  
Samia Ben Sassi ◽  
Fatma Nebli ◽  
Taieb Messaoud ◽  
...  

Background: Iron plays an important role in maintaining cell survival, with normal iron trafficking known to be regulated by the ceruloplasmin-transferrin (Cp-Tf) antioxidant system. Disruption to this system is thought to be detrimental to normal brain function. Objective: To determine whether an imbalance of iron and the proteins involved in its metabolism (ceruloplasmin and transferrin) are linked to Alzheimer’s disease (AD) and to the expression of amyloid-beta (Aβ) peptide 1–42 (Aβ1–42), which is a major species of Aβ, and the most toxic. Methods: We evaluated the concentrations of iron, calcium, magnesium, and Aβ1–42 in the cerebrospinal fluid (CSF) of patients with AD and cognitively normal controls. Correlations between the components of the Cp-Tf antioxidant system in plasma were studied to determine the role of peripheral blood in the onset and/or development of AD. We used commercial ELISA immunoassays to measure Aβ1–42, immunoturbidimetry to quantify ceruloplasmin and transferrin, and colorimetry to quantify iron, calcium, and magnesium. Results: We found that the AD group had lower CSF concentrations of Aβ1–42 (p < 0.001) and calcium (p < 0.001), but a higher CSF concentration of iron (p < 0.001). Significantly lower plasma concentrations of ceruloplasmin (p = 0.003), transferrin (mean, p < 0.001), and iron (p < 0.001) were observed in the AD group than in cognitively normal adults. Moreover, we found a strong interdependence between most of these components. Conclusion: Iron dyshomeostasis has a crucial role in the onset of AD and/or its development. Correcting metal misdistribution is an appealing therapeutic strategy for AD.


Author(s):  
Priyanka Madhu ◽  
Debapriya Das ◽  
Samrat Mukhopadhyay

The accumulation of toxic soluble oligomers of the amyloid-β peptide (Aβ) is a key step in the pathogenesis of Alzheimer’s disease. There are mainly two conformationally distinct oligomers, namely, prefibrillar...


Sign in / Sign up

Export Citation Format

Share Document