scholarly journals A Unified Framework for Computationally Efficient Power Converter Design Optimisation

Author(s):  
I.D. Laird ◽  
X. Yuan ◽  
J. Scoltock ◽  
A.J. Forsyth
2012 ◽  
Vol 27 (3) ◽  
pp. 1327-1337 ◽  
Author(s):  
Ruiyang Yu ◽  
Bryan Man Hay Pong ◽  
Bingo Wing-Kuen Ling ◽  
J. Lam

Author(s):  
A.L. Gattozzi ◽  
S.M. Strank ◽  
S.P. Pish ◽  
J.D. Herbst ◽  
R.E. Hebner ◽  
...  

2013 ◽  
Vol 321-324 ◽  
pp. 1439-1442
Author(s):  
Yi Feng Zhu ◽  
Zheng Zheng ◽  
Hai Jun Tao

In high power converter design, low-inductance busbar connecting DC capacitors and power devices is main concern to improve the quality of the whole power electronics system. This paper analyzes the impact of layer-number on the stray inductance of busbar taking a subway traction converter as example. The method of partial element equivalent circuit and the Q3D software were used to extract the stray inductance. The simulation and experimental results show that the stray inductance of three-layer busbar is lower than two-layer busbar with other same conditions.


Author(s):  
Varun Lobo ◽  
Arindam Banerjee ◽  
Nyuykighan Mainsah ◽  
Jonathan Kimball

A Vortex Induced Vibration (VIV) based hydrokinetic energy system is discussed in this paper. Vibrations induced on a body (facing an external flow) due to the periodic irregularities in the flow caused by boundary layer separation are called as VIV. This separation of the boundary layer from the surface causes vortex formation in the wake region of the cylinder. The lift-force or the transverse oscillation of the vibrating cylinder depends upon the strength and modes of the vortex formed. The VIV energy harvesting system is based on the idea of maximizing rather than spoiling vortex shedding and was discovered in 2004 at the University of Michigan by Bernitsas and Raghavan. The vibrating bodies will in turn be used to harness energy using an efficient power-take-off system. In this paper, we discuss the hydrodynamic design of such a VIV based energy harvesting system using computational fluid dynamics. A fluid structure interaction calculation is performed to determine the forces on the surface of a bluff body due to separation of vortices from the surface. The hydrodynamic forces that act on such a system depend on the cylinder diameter, flow velocity, modes of vortex shedding and arrangement of cylinder(s). A detailed computational study on the effect of different design parameters listed above are first carried on a single cylinder arrangement; this is followed by a more detailed analysis that is extended to multiple cylinders. For a two-cylinder arrangement, the positions in which the cylinders are placed are also found to play an important role, as the vortex shed from one cylinder may be used to enhance the forces of lift on another cylinder present in its wake. Furthermore, the design of a VIV generator requires optimal damping and low mass ratio to enable high energy conversion via an efficient power take-off mechanism. The working and design considerations of the energy converter is outlined starting with a set of basic definitions pertaining to this technology. A tubular linear interior permanent magnet generator (TL-IPM) connected to a power converter is used; a linear generator was chosen to minimize mechanical components, such as gears or cams in the system.


CYCLOTRON ◽  
2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Gita Arya Pratama ◽  
M. Krisna Ramadhani Ananta ◽  
Rio Winas Setia Budi ◽  
Belly Yan Dewantara ◽  
Iradiratu K

Abstrak— Paper ini menampilkan desain double boost converter yang mempunyai kemampuan menggandakan tegangan dua kali lipat berturut  turut beban DC yang menghasilkan tegangan output tambahan atau cadangan suplai pada beban. Pada umumnya double boost converter ini adalah konverter daya DC to Dc meningkatkan tegangan dari input (pasokan) ke output (beban) di desain menunjukkan bahwa dengan inputan sumber AC yang di searahkan terlebih dulu dengan converter penyearah berfungsi untuk mengatur kecepatan motor BLDC. Untuk pengontrolan pada beban motor menggunakan PI controller ( Proportional Integrator) dimana  parameter PI controller diperoleh dari trial eror. PI controller juga berfungsi memperbaiki gelombang keluaran dan kecepatan motor BLDC. Kata kunci : Motor BLDC, Double Boost Converter, PI controller. Abstract— This paper features a double boost converter design that has the ability to double the successive voltage in a DC load which results in an additional output voltage or supply reserve at load. In general, this double boost converter is a DC to Dc power converter increasing the voltage from input (supply) to output (load) in the design shows that the input AC source is aligned first with the rectifier converter to regulate the speed of the BLDC motor. To control the motor load using a PI controller (Proportional Integrator) where the PI controller parameter is obtained from the trial error. The PI controller also functions to improve the wave output and speed of the BLDC motor.


Sign in / Sign up

Export Citation Format

Share Document