Influence of Geometrical Parameters on Dust Removal Performance of Cyclone Dust Collector for Bleed Air System of ECS

Author(s):  
Li chaofei ◽  
Chen weijian ◽  
Huang zhengshi
2020 ◽  
Vol 24 (5 Part A) ◽  
pp. 2665-2675
Author(s):  
Songsong Zhang ◽  
Qian Du ◽  
Guoli Qi

Particle size distributions, concentrations, morphological characteristics, and elemental compositions of eight fluidized bed boilers with different capacities and different dust collectors were determined experimentally. The PM2.5 particle concentration and mass concentration were monitored in real-time before and after the boiler dust collector by electric low pressure impactor, and the physical and chemical properties of PM2.5 were analyzed by membrane sampling. We found that the PM2.5 particle concentration produced by industrial fluidized bed boilers displayed bimodal distributions, peaking at 0.2 ?m and 0.76 ?m, the formed mechanism of these two parts particles is vaporization-condensation of mineral matter and residual ash particles and the adsorbent wear or tear. Mass concentration exhibits a single peak characteristic with a peak at 0.12 ?m. The removal efficiency for PM2.5 of dust collectors varies with different dust removal mechanisms. The electrostatic precipitator and bag filter have high dust removal efficiency, and the water film dust collector has low dust removal efficiency. The normal operation of the bag filter has a great influence on the dust removal efficiency. The physical and chemical properties of PM2.5 showed that the single-particle morphology was mainly composed of irregular particles, containing a small amount of solid spherical particles and more agglomerates. The content of Si and Al in PM2.5 elemental analysis is the highest, which decreases after a dust collector. Some fluidized bed boilers use desulfurization in the furnace, which has great influence on the mass concentration of Ca and S elements, and the lowest Hg content in trace elements, about a few ppm. <br><br><font color="red"><b> This article has been corrected. Link to the correction <u><a href="http://dx.doi.org/10.2298/TSCI200901242E">10.2298/TSCI200901242E</a><u></b></font>


2014 ◽  
Vol 2 (10(68)) ◽  
pp. 11
Author(s):  
Дмитро Олександрович Серебрянський ◽  
Сергій Володимирович Плашихін ◽  
Юрій Олександрович Безносик ◽  
Олександр Миколайович Набок

Author(s):  
Jing Jiang ◽  
Hong-Yue Zhao ◽  
Jin-Cheng Ding ◽  
Hong-Hao Yue ◽  
Xu-Yan Hou

The deposition of lunar dust on the surface of solar panels and optical elements is one of the most important problems need to be solved in lunar exploration. This paper will propose an initiative lunar dust removal system based on the photovoltaic effect of PbLaZrTi (PLZT), which is activated by the ultraviolet light extracted from sun light at the lunar surface. When ultraviolet light with a wavelength near 365nm illuminates on polarized PLZT materials, high voltages of several kilovolt per centimeter can be generated between two electrodes of PLZT. When two electrodes of PLZT are connected to a lunar dust collector (LDC) and the ITO film of protected surface respectively, an electrostatic field forms between LDC and the protected surface. Coulomb forces over particles will overcome gravitational force and surface forces, so the particles can be absorbed to LDC and removed by LDC finally. Based on the equivalent electrical model, mathematical model of electrostatic force is derived when the lunar removal electric field is acted either by single piece PLZT or by multi-pieces PLZT which are connected in parallel. Experimental platform is set up to prove the feasibility of this lunar dust removal system. In order to improve the removal efficiency, a novel configuration design of LDC based on multi-PLZT patched is proposed and its removal efficiency is evaluated by experiments.


Author(s):  
Masayoshi OZAWA ◽  
Haruki TAKAHASHI ◽  
Toshihiko SHIMIZU ◽  
Masahiko SAKAI ◽  
Tadahiro OYAMA

2018 ◽  
Vol 2018 ◽  
pp. 1-5
Author(s):  
Ming Li ◽  
Chao Wu ◽  
Zhi-yong Zhou ◽  
Wei-chun Lian ◽  
Zhi-xiong Chen

A set of dust collectors was designed with corrugated plate for an underground metal mine, which has low ventilation resistance, simple maintenance, and strong environmental adaptability. A three-dimensional simulation model was built based on ANSYS-Fluent software, and it was used to analyze the influence law of key parameters on the comprehensive dust removal efficiency; the angle of corrugated plate to the horizontal plane, the surface characteristics of plate, pressure loss and dust removal efficiency were discussed. The optimal design scheme of the dust collector was determined according to the simulation results. The dust collection was carried out in the Fankou lead-zinc underground metal mine in China, and the total dust removal efficiency was more than 95%, and for respiratory dust, it was more than 85%. This dust collector can be widely used in similar underground metal mines.


Author(s):  
Shoji Hayashi ◽  
Masatoshi Watanabe ◽  
Yukiji Iwase ◽  
Kyoichi Kanno ◽  
Keiichi Fujimori

A household vacuum cleaner named “Tatsumaki cyclone” with a new cyclone dust collector was developed. It has a unique horizontal layout called the inverted cyclone layout that features a dust bunker adjacent to a cyclone cylinder with an up-draught airflow. It also has a new airflow arrangement called triple-suction airflow that separates airflow after removing dust at the cyclone cylinder. The main suction airflow is exhausted from the main port (which is downstream of the cyclone cylinder) through an inner cylinder. The sub-suction airflow is exhausted from the dust bunker after it heavily compresses the dust (sub port). The center suction airflow is exhausted from the center port. In this study, we used the Cartesian grid system to simulate the flow field inside the dust collector. This system uses only rectangular parallelepiped meshes; profiles of the dust collector were represented by stepped surfaces of cubic meshes. Each mesh was generated based on whether it was inside or outside the solid body of the dust collector. High-performance computers have recently been used to help generate super-fine meshes that fit closely the smooth shape of a dust collector. The Cartesian grid system has the advantage of being able to quickly generate square-meshes of complex shape that can be converted directly from the CAD data. We simulated the velocity distribution of single-suction, twin-suction and triple-suction models. The single-suction model had only a main port to exhaust airflow, the twin-suction model had a main port, and a sub port, and the triple-suction model had a main port, a sub port, and a center port. In this study, a Cartesian grid system with a finite difference method was used to correct the unsteady three-dimensional flows. After the simulation, we experimented with pressure losses and measured change in air quantity by the dust load of each model. These steps enabled us to develop a new cyclone dust collector called Tatsumaki cyclone as part of a compact household vacuum cleaner with lower pressure loss and a larger capacity dust bunker.


Sign in / Sign up

Export Citation Format

Share Document