A case study in top-down collaborative assembly design

Author(s):  
Yang Youdong ◽  
Li Zhihua ◽  
Gao Shuming ◽  
Zhang Shuting
2005 ◽  
Vol 6 (2) ◽  
pp. 200-208 ◽  
Author(s):  
C. Lu ◽  
J. Y. H. Fuh ◽  
Y. S. Wong ◽  
Z. M. Qiu ◽  
W. D. Li ◽  
...  

This paper discusses the design modification issue in a collaborative assembly (co-assembly) design environment, which enables multiple geographically dispersed designers to design and assemble parts collaboratively and synchronously through the Internet. An assembly representation model, viz. feature-based hierarchical co-assembly representation, is proposed to resolve the co-assembly design issues. In order to realize the design modification, a design modification propagation control mechanism is proposed. A system framework that is suitable for realizing the design modification is also proposed and developed. Finally, the detailed design modification propagation control mechanism is demonstrated through a case study.


2008 ◽  
Vol 44-46 ◽  
pp. 215-224
Author(s):  
Yu Dong Yang ◽  
Zhi Hua Li ◽  
Shu Ting Zhang

According to the characteristics of the design process of top-down collaborative assembly design, process planning dynamic model based on HOOPN (hierarchical object-oriented Petri-net) is constructed for top-down collaborative assembly design. The outside and inside task dependent relationships among the task groups include parallel, sequence and coupling are implemented. The definitions of attribute for each element and the activation rules are presented for Petri-net. The fuzzy overall evaluation model is applied for risk evaluation of design process, and the local and global risk level is determined. The whole process planning is adjusted and controlled based on special risk decision-making mechanism.


Author(s):  
Youdong Yang ◽  
Shuting Zhang ◽  
Zhihua Li

The design process of top-down collaborative assembly design is high parallel. There are complex task relationships not only in a task group but also among different task groups, which we call them as inside and outside relationships. A dynamic model of process planning based on hierarchical object-oriented Petri-net (HOOPN) is constructed for top-down collaborative assembly design. The dynamic model represents the outside and inside task relationships including parallel, sequential and coupling relationships. Based on the dynamic model, the dynamic supervising, analysis and decision-making for the states of the design process are implemented. The fuzzy overall evaluation model (FOEM) is utilized for risk evaluation of the design process. The task execution is influenced by local and global risk level from FOEM. Finally, the whole process planning is adjusted and controlled dynamically by the special risk decision-making mechanism.


Author(s):  
Y. D. Mulia

For S-15 and S-14 wells at South S Field, drilling of the 12-1/4” hole section became the longest tangent hole section interval of both wells. There were several challenges identified where hole problems can occur. The hole problems often occur in the unconsolidated sand layers and porous limestone formation sections of the hole during tripping in/out operations. Most of the hole problems are closely related to the design of the Bottom Hole Assembly (BHA). In many instances, hole problems resulted in significant additional drilling time. As an effort to resolve this issue, a new BHA setup was then designed to enhance the BHA drilling performance and eventually eliminate hole problems while drilling. The basic idea of the enhanced BHA is to provide more annulus clearance and limber BHA. The purpose is to reduce the Equivalent Circulating Density (ECD,) less contact area with formation, and reduce packoff risk while drilling through an unconsolidated section of the rocks. Engineering simulations were conducted to ensure that the enhanced BHA were able to deliver a good drilling performance. As a results, improved drilling performance can be seen on S-14 well which applied the enhanced BHA design. The enhanced BHA was able to drill the 12-1/4” tangent hole section to total depth (TD) with certain drilling parameter. Hole problems were no longer an issue during tripping out/in operation. This improvement led to significant rig time and cost savings of intermediate hole section drilling compared to S-15 well. The new enhanced BHA design has become one of the company’s benchmarks for drilling directional wells in South S Field.


2021 ◽  
Vol 11 (10) ◽  
pp. 4620
Author(s):  
Niki Kousi ◽  
Christos Gkournelos ◽  
Sotiris Aivaliotis ◽  
Konstantinos Lotsaris ◽  
Angelos Christos Bavelos ◽  
...  

This paper discusses a digital twin-based approach for designing and redesigning flexible assembly systems. The digital twin allows modeling the parameters of the production system at different levels including assembly process, production station, and line level. The approach allows dynamically updating the digital twin in runtime, synthesizing data from multiple 2D–3D sensors in order to have up-to-date information about the actual production process. The model integrates both geometrical information and semantics. The model is used in combination with an artificial intelligence logic in order to derive alternative configurations of the production system. The overall approach is discussed with the help of a case study coming from the automotive industry. The case study introduces a production system integrating humans and autonomous mobile dual arm workers.


2021 ◽  
Vol 7 (2) ◽  
pp. 205630512110249
Author(s):  
Peer Smets ◽  
Younes Younes ◽  
Marinka Dohmen ◽  
Kees Boersma ◽  
Lenie Brouwer

During the 2015 refugee crisis in Europe, temporary refugee shelters arose in the Netherlands to shelter the large influx of asylum seekers. The largest shelter was located in the eastern part of the country. This shelter, where tents housed nearly 3,000 asylum seekers, was managed with a firm top-down approach. However, many residents of the shelter—mainly Syrians and Eritreans—developed horizontal relations with the local receiving society, using social media to establish contact and exchange services and goods. This case study shows how various types of crisis communication played a role and how the different worlds came together. Connectivity is discussed in relation to inclusion, based on resilient (non-)humanitarian approaches that link society with social media. Moreover, we argue that the refugee crisis can be better understood by looking through the lens of connectivity, practices, and migration infrastructure instead of focusing only on state policies.


Sign in / Sign up

Export Citation Format

Share Document