De‐noising MEMS inertial sensors for low‐cost vehicular attitude estimation based on singular spectrum analysis and independent component analysis

2013 ◽  
Vol 49 (14) ◽  
pp. 892-893 ◽  
Author(s):  
Z.W. Wu ◽  
M.L. Yao ◽  
H.G. Ma ◽  
W.M. Jia
2021 ◽  
Author(s):  
Muhammad Zubair

<pre>Alcoholism is a widely affected disorder that leads to critical brain deficiencies such as emotional and behavioural impairments. One of the prominent sources to detect alcoholism is by analysing Electroencephalogram (EEG) signals. Previously, most of the works have focused on detecting alcoholism using various machine and deep learning algorithms. This paper has used a novel algorithm named Sliding Singular Spectrum Analysis (S-SSA) to decompose and de-noise the EEG signals. We have considered independent component analysis (ICA) to select the prominent alcoholic and non-alcoholic components from the preprocessed EEG data. Later, these components were used to train and test various machine learning models like SVM, KNN, ANN, GBoost, AdaBoost and XGBoost to classify alcoholic and non-alcoholic EEG signals. The sliding SSA-ICA algorithm helps in reducing the computational time and complexity of the machine learning models. To validate the performance of the ICA algorithm, we have compared the computational time and accuracy of ICA with its counterpart, like principal component analysis (PCA). The proposed algorithm is tested on a publicly available UCI alcoholic EEG dataset. To verify the performance of machine learning models, we have calculated various metrics like accuracy, precision, recall and F1 score. Our work reported the highest accuracy of 98.97% with the XGBoost classifier. The validation of the proposed method is done by comparing the classification metrics with the latest state-of-the-art works.</pre>


2020 ◽  
Author(s):  
Yahia Alghorani ◽  
salama Ikki

<div>The aim of this study is to propose a low-complexity algorithm that can be used for the joint sparse recovery of biosignals. The framework of the proposed algorithm supports real-time patient monitoring systems that enhance the detection, tracking, and monitoring of vital signs via wearable biosensors. Specifically, we address the problem of sparse signal recovery and acquisition in wearable biosensor networks, where we develop an efficient computational framework using compressed sensing (CS) and independent component analysis (ICA) to reduce and eliminate artifacts and interference in sparse biosignals. Our analysis and examples indicate that the CS-ICA algorithm helps to develop low-cost, low-power wearable biosensors while improving data quality and accuracy for a given measurement. We also show that, under noisy measurement conditions, the CS-ICA algorithm can outperform the standard CS method, where a biosignal can be retrieved in only a few measurements. By implementing the sensing framework, the error in reconstructing biosignals is reduced, and a digital-to-analog converter operates at low-speed and low-resolution</div>


2016 ◽  
Vol 70 (9) ◽  
pp. 1582-1588 ◽  
Author(s):  
J. Bruce Rafert ◽  
Jaime Zabalza ◽  
Stephen Marshall ◽  
Jinchang Ren

Hyperspectral remote sensing is experiencing a dazzling proliferation of new sensors, platforms, systems, and applications with the introduction of novel, low-cost, low-weight sensors. Curiously, relatively little development is now occurring in the use of Fourier transform (FT) systems, which have the potential to operate at extremely high throughput without use of a slit or reductions in both spatial and spectral resolution that thin film based mosaic sensors introduce. This study introduces a new physics-based analytical framework called singular spectrum analysis (SSA) to process raw hyperspectral imagery collected with FT imagers that addresses some of the data processing issues associated with the use of the inverse FT. Synthetic interferogram data are analyzed using SSA, which adaptively decomposes the original synthetic interferogram into several independent components associated with the signal, photon and system noise, and the field illumination pattern.


2004 ◽  
Vol 43 (01) ◽  
pp. 74-78 ◽  
Author(s):  
A. M. Bianchi ◽  
F. Cincotti ◽  
C. Babiloni ◽  
F. Carducci ◽  
F. Babiloni ◽  
...  

Summary Objectives: The aim of the work was to compare two different approaches – one model-dependent, the other data-dependent – for “deblurring” EEG data, in order to improve the estimation of Event-Related Desynchronization/Synchronization. Methods: Realistic Surface Laplacian filtering (SL) and Infomax Independent Component Analysis (ICA) were applied on multivariate scalp EEG signals (SL: 128 electrodes with MRI-based realistic modeling; ICA: a subset of 19 electrodes, no MRI) prior to beta Event Related Synchronization (ERS) estimation after finger movement in 8 normal subjects. ERS estimation was performed using standard band-pass filtering. ERS peak amplitudes and latencies in the most responsive channel were calculated and the effect of the two methods above was evaluated by one-way analysis of variance (ANOVA) and Sheffe’s test. Results: Both methods and their combination significantly improved ERS estimation (greater ERS peak amplitude, p <0.05). The results obtained after ICA on 19 electrodes were not significantly different than the ones obtained with Realistic SL using 128 electrodes and MRI for scalp modeling (p >0.89). Conclusions: The “low cost” of ICA (19 electrodes, no MRI) imposes such method as a valid alternative to SL filtering. The employ of ICA after SL filtering suggests that the “ideal EEG deblurring method” would unify the two approaches, depending on both the scalp model and the data.


Sign in / Sign up

Export Citation Format

Share Document