scholarly journals An isolated‐boost‐converter‐based unidirectional three‐phase off‐board fast charger for electric vehicles

Author(s):  
Ahmed Elserougi ◽  
Ibrahim Abdelsalam ◽  
Ahmed Massoud
2021 ◽  
Vol 12 (3) ◽  
pp. 107
Author(s):  
Tao Chen ◽  
Peng Fu ◽  
Xiaojiao Chen ◽  
Sheng Dou ◽  
Liansheng Huang ◽  
...  

This paper presents a systematic structure and a control strategy for the electric vehicle charging station. The system uses a three-phase three-level neutral point clamped (NPC) rectifier to drive multiple three-phase three-level NPC converters to provide electric energy for electric vehicles. This topology can realize the single-phase AC mode, three-phase AC mode, and DC mode by adding some switches to meet different charging requirements. In the case of multiple electric vehicles charging simultaneously, a system optimization control algorithm is adopted to minimize DC-bus current fluctuation by analyzing and reconstructing the DC-bus current in various charging modes. This algorithm uses the genetic algorithm (ga) as the core of computing and reduces the number of change parameter variables within a limited range. The DC-bus current fluctuation is still minimal. The charging station system structure and the proposed system-level optimization control algorithm can improve the DC-side current stability through model calculation and simulation verification.


2015 ◽  
Vol 62 (1) ◽  
pp. 3-14 ◽  
Author(s):  
Mahshid Amirabadi ◽  
Jeihoon Baek ◽  
Hamid A. Toliyat ◽  
William C. Alexander

2021 ◽  
Vol 3 (3) ◽  
pp. 182-195
Author(s):  
Edriss Eisa Babikir Adam ◽  
A. Sathesh

With modernization and technology enhancements on a global scale, environmental consciousness has also been increasing in recent days. Various technologies and automobile industries are vandalized with sustainable solutions and green technologies. Transportation via roadways is mostly preferred for distant travel as well, despite the advancements in airways and railways, due to less capital outlay, door to door service possibility in rural areas etc. The conventional fuel vehicles are a huge contributor to environmental pollution. Electric vehicles are an optimal solution to this issue. The lives of the common masses are not impacted largely by the electric vehicles despite their market commercialization since a few decades. It is due to certain challenges associated with the electrical vehicles. A 100% efficient perpetual machine does not exist yet. Predominantly, challenges related to charging, hinders the success of e-vehicles. Frequent charging is required in case of long-distance travel and other scenarios in the existing vehicles. Based on the respective governments, extensive changes are made in the infrastructure to overcome the issues at the charging stations. In this paper, an enhanced wireless charging module for electric vehicles is presented. The use of multiple coils is emphasized for building up energy and transmitting it. The inductive power transfer mechanism and efficiency of the system are improved with the design of a three-phase coil. The mechanism for assessment of the energy consumed in e-vehicles is also discussed.


Sign in / Sign up

Export Citation Format

Share Document