Wide input/output control method for a bidirectional series capacitor high-gain DC–DC converter

Author(s):  
Z. Guo ◽  
Y. Wang ◽  
F. Wang ◽  
X. Tian ◽  
Y. Dong
2021 ◽  
Vol 21 (5) ◽  
pp. 735-746
Author(s):  
Zheng Guo ◽  
Yubin Wang ◽  
Fan Wang ◽  
Xinna Tian ◽  
Yuxiang Dong

2018 ◽  
Vol 138 (12) ◽  
pp. 803-806
Author(s):  
Kazuhiko OGIMOTO ◽  
Yasuhiro HAYASHI ◽  
Shuichi ASHIDATE

2011 ◽  
Vol 11 (1) ◽  
pp. 16 ◽  
Author(s):  
Pisit Sukkarnkha ◽  
Chanin Panjapornpon

In this work, a new control method for uncertain processes is developed based on two-degree-of-freedom control structure. The setpoint tracking controller designed by input/output linearization technique is used to regulate the disturbance-free output and the disturbance rejection controller designed is designed by high-gain technique. The advantage of two-degree-of-freedom control structure is that setpoint tracking and load disturbance rejection controllers can be designed separately. Open-loop observer is applied to provide disturbance-free response for setpoint tracking controller. The process/disturbance-free model mismatches are fed to the disturbance rejection controller for reducing effect of disturbance. To evaluate the control performance, the proposed control method is applied through the example of a continuous stirred tank reactor with unmeasured input disturbances and random noise kinetic parametric uncertainties. The simulation results show that both types of disturbances can be effectively compensated by the proposed control method.


Author(s):  
Yan Liu ◽  
Dirk So¨ffker

This paper introduces a robust nonlinear control method combining classical feedback linearization and a high-gain PI-Observer (Proportional-Integral Observer) approach that can be applied to control a nonlinear single-input system with uncertainties or unknown effects. It is known that the lack of robustness of the feedback linearization approach limits its practical applications. The presented approach improves the robustness properties and extends the application area of the feedback linearization control. The approach is developed analytically and fully illustrated. An example which uses input-state linearization and PI-Observer design is given to illustrate the idea and to demonstrate the advantages.


2021 ◽  
pp. 107754632110433
Author(s):  
Xiao-juan Wei ◽  
Ning-zhou Li ◽  
Wang-cai Ding

For the chaotic motion control of a vibro-impact system with clearance, the parameter feedback chaos control strategy based on the data-driven control method is presented in this article. The pseudo-partial-derivative is estimated on-line by using the input/output data of the controlled system so that the compact form dynamic linearization (CFDL) data model of the controlled system can be established. And then, the chaos controller is designed based on the CFDL data model of the controlled system. And the distance between two adjacent points on the Poincaré section is used as the judgment basis to guide the controller to output a small perturbation to adjust the damping coefficient of the controlled system, so the chaotic motion can be controlled to a periodic motion by dynamically and slightly adjusting the damping coefficient of the controlled system. In this method, the design of the controller is independent of the order of the controlled system and the structure of the mathematical model. Only the input/output data of the controlled system can be used to complete the design of the controller. In the simulation experiment, the effectiveness and feasibility of the proposed control method in this article are verified by simulation results.


2019 ◽  
Vol 9 (2) ◽  
pp. 276 ◽  
Author(s):  
Yugong Luo ◽  
Yun Hu ◽  
Fachao Jiang ◽  
Rui Chen ◽  
Yongsheng Wang

To solve the problems with the existing active fault-tolerant control system, which does not consider the cooperative control of the drive system and steering system or accurately relies on the vehicle model when one or more motors fail, a multi-input and multi-output model-free adaptive active fault-tolerant control method for four-wheel independently driven electric vehicles is proposed. The method, which only uses the input/output data of the vehicle in the control system design, is based on a new dynamic linearization technique with a pseudo-partial derivative, aimed at solving the complex and nonlinear issues of the vehicle model. The desired control objectives can be achieved by the coordinated adaptive fault-tolerant control of the drive and steering systems under different failure conditions of the drive system. The error convergence and input-output boundedness of the control system are proven by means of stability analysis. Finally, simulations and further experiments are carried out to validate the effectiveness and real-time response of the fault-tolerant system in different driving scenarios. The results demonstrate that our proposed approach can maintain the longitudinal speed error (within 3%) and lateral stability, thereby improving the safety of the vehicles.


Sign in / Sign up

Export Citation Format

Share Document