scholarly journals The spatiotemporal patterns of surface soil moisture in Northeast China based on remote sensing products

2016 ◽  
Vol 7 (4) ◽  
pp. 708-720 ◽  
Author(s):  
Xingming Zheng ◽  
Kai Zhao ◽  
Yanling Ding ◽  
Tao Jiang ◽  
Shiyi Zhang ◽  
...  

Northeast China (NEC) has become one of China's most obvious examples of climate change because of its rising warming rate of 0.35 °C/10 years. As the indicator of climate change, the dynamic of surface soil moisture (SSM) has not been assessed yet. We investigated the spatiotemporal dynamics of SSM in NEC using a 32-year SSM product and found the following. (1) SSM displayed the characteristics of being dry in the west and wet in the east and decreased with time. (2) The seasonal difference was found for the temporal dynamics of SSM: it increased in summer and decreased in spring and autumn. (3) For all four regions studied, the temporal dynamics of SSM were similar to those of the whole of NEC, but with different rates of SSM change. Moreover, SSM in regions B and D had a lower spatial variance than the other two regions because of the stable spatial pattern of cropland. (4) The change rates for SSM were consistent with that observed for the warming rates, which indicated that SSM levels derived from remote sensing data will correlate with climate change. In summary, a wetter summer and a drier spring and autumn were observed in NEC over the past 30 years.

Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3223
Author(s):  
Hamed Adab ◽  
Renato Morbidelli ◽  
Carla Saltalippi ◽  
Mahmoud Moradian ◽  
Gholam Abbas Fallah Ghalhari

Soil moisture is an integral quantity parameter in hydrology and agriculture practices. Satellite remote sensing has been widely applied to estimate surface soil moisture. However, it is still a challenge to retrieve surface soil moisture content (SMC) data in the heterogeneous catchment at high spatial resolution. Therefore, it is necessary to improve the retrieval of SMC from remote sensing data, which is important in the planning and efficient use of land resources. Many methods based on satellite-derived vegetation indices have already been developed to estimate SMC in various climatic and geographic conditions. Soil moisture retrievals were performed using statistical and machine learning methods as well as physical modeling techniques. In this study, an important experiment of soil moisture retrieval for investigating the capability of the machine learning methods was conducted in the early spring season in a semi-arid region of Iran. We applied random forest (RF), support vector machine (SVM), artificial neural network (ANN), and elastic net regression (EN) algorithms to soil moisture retrieval by optical and thermal sensors of Landsat 8 and knowledge of land-use types on previously untested conditions in a semi-arid region of Iran. The statistical comparisons show that RF method provided the highest Nash–Sutcliffe efficiency value (0.73) for soil moisture retrieval covered by the different land-use types. Combinations of surface reflectance and auxiliary geospatial data can provide more valuable information for SMC estimation, which shows promise for precision agriculture applications.


2018 ◽  
Vol 65 (3) ◽  
pp. 481-499 ◽  
Author(s):  
Rida Khellouk ◽  
Ahmed Barakat ◽  
Abdelghani Boudhar ◽  
Rachid Hadria ◽  
Hayat Lionboui ◽  
...  

2010 ◽  
Vol 7 (1) ◽  
pp. 649-686 ◽  
Author(s):  
S. Juglea ◽  
Y. Kerr ◽  
A. Mialon ◽  
J.-P. Wigneron ◽  
E. Lopez-Baeza ◽  
...  

Abstract. The main goal of the SMOS (Soil Moisture and Ocean Salinity) mission is to deliver global fields of surface soil moisture and sea surface salinity using L-band (1.4 GHz) radiometry. Within the context of the preparation for this mission over land, the Valencia Anchor Station experimental site, in Spain, was chosen to be one of the main test sites in Europe for the SMOS Calibration/Validation (Cal/Val) activities. Ground and meteorological measurements over the area are used as the input of a Soil-Vegetation-Atmosphere-Transfer (SVAT) model, SURFEX (Externalized Surface)-module ISBA (Interactions between Soil-Biosphere-Atmosphere) so as to simulate the surface soil moisture. The calibration as well as the validation of the ISBA model was made using in situ soil moisture measurements. It is shown that a good consistency was reached when point comparisons between simulated and in situ soil moisture measurements were made. In order to obtain an accurate soil moisture mapping over the Valencia Anchor Station (50×50 km2 area), a spatialization method has been applied. To validate the approach, a comparison with remote sensing data from the Advanced Microwave Scanning Radiometer on Earth observing System (AMSR-E) and from the European Remote Sensing Satellites (ERS-Scat) was performed. Despite the fact that AMSR-E surface soil moisture product is not reproducing accurately the absolute values, it provides trustworthy information on surface soil moisture temporal variability. However, during the vegetation growing season the signal is perturbed. By using the polarization ratio a better agreement is obtained. ERS-Scat soil moisture products were also used to be compared with the simulated spatialized soil moisture. The seasonal variations were well reproduced. However, the lack of soil moisture data over the area (45 observations for one year) was a limit into completely understanding the soil moisture variability.


Sign in / Sign up

Export Citation Format

Share Document