Research on Early Warning of Continuous Commutation Failure of HVDC Transmission Line Based on Machine Learning Methods

2021 ◽  
Author(s):  
W. Bin ◽  
S. Yibo ◽  
L. Chao ◽  
L. Yan
2021 ◽  
Vol 21 (S2) ◽  
Author(s):  
Huan Chen ◽  
Yingying Ma ◽  
Na Hong ◽  
Hao Wang ◽  
Longxiang Su ◽  
...  

Abstract Background Regional citrate anticoagulation (RCA) is an important local anticoagulation method during bedside continuous renal replacement therapy. To improve patient safety and achieve computer assisted dose monitoring and control, we took intensive care units patients into cohort and aiming at developing a data-driven machine learning model to give early warning of citric acid overdose and provide adjustment suggestions on citrate pumping rate and 10% calcium gluconate input rate for RCA treatment. Methods Patient age, gender, pumped citric acid dose value, 5% NaHCO3 solvent, replacement fluid solvent, body temperature value, and replacement fluid PH value as clinical features, models attempted to classify patients who received regional citrate anticoagulation into correct outcome category. Four models, Adaboost, XGBoost, support vector machine (SVM) and shallow neural network, were compared on the performance of predicting outcomes. Prediction results were evaluated using accuracy, precision, recall and F1-score. Results For classifying patients at the early stages of citric acid treatment, the accuracy of neutral networks model is higher than Adaboost, XGBoost and SVM, the F1-score of shallow neutral networks (90.77%) is overall outperformed than other models (88.40%, 82.17% and 88.96% for Adaboost, XGBoost and SVM). Extended experiment and validation were further conducted using the MIMIC-III database, the F1-scores for shallow neutral networks, Adaboost, XGBoost and SVM are 80.00%, 80.46%, 80.37% and 78.90%, the AUCs are 0.8638, 0.8086, 0.8466 and 0.7919 respectively. Conclusion The results of this study demonstrated the feasibility and performance of machine learning methods for monitoring and adjusting local regional citrate anticoagulation, and further provide decision-making recommendations to clinicians point-of-care.


2020 ◽  
Vol 122 (14) ◽  
pp. 1-30
Author(s):  
James Soland ◽  
Benjamin Domingue ◽  
David Lang

Background/Context Early warning indicators (EWI) are often used by states and districts to identify students who are not on track to finish high school, and provide supports/interventions to increase the odds the student will graduate. While EWI are diverse in terms of the academic behaviors they capture, research suggests that indicators like course failures, chronic absenteeism, and suspensions can help identify students in need of additional supports. In parallel with the expansion of administrative data that have made early versions of EWI possible, new machine learning methods have been developed. These methods are data-driven and often designed to sift through thousands of variables with the purpose of identifying the best predictors of a given outcome. While applications of machine learning techniques to identify students at-risk of high school dropout have obvious appeal, few studies consider the benefits and limitations of applying those models in an EWI context, especially as they relate to questions of fairness and equity. Focus of Study In this study, we will provide applied examples of how machine learning can be used to support EWI selection. The purpose is to articulate the broad risks and benefits of using machine learning methods to identify students who may be at risk of dropping out. We focus on dropping out given its salience in the EWI literature, but also anticipate generating insights that will be germane to EWI used for a variety of outcomes. Research Design We explore these issues by using several hypothetical examples of how ML techniques might be used to identify EWI. For example, we show results from decision tree algorithms used to identify predictors of dropout that use simulated data. Conclusions/Recommendations Generally, we argue that machine learning techniques have several potential benefits in the EWI context. For example, some related methods can help create clear decision rules for which students are a dropout risk, and their predictive accuracy can be higher than for more traditional, regression-based models. At the same time, these methods often require additional statistical and data management expertise to be used appropriately. Further, the black-box nature of machine learning algorithms could invite their users to interpret results through the lens of preexisting biases about students and educational settings.


Sign in / Sign up

Export Citation Format

Share Document