Exponential H ∞ filtering for switched neural networks with mixed delays

2014 ◽  
Vol 8 (11) ◽  
pp. 987-995 ◽  
Author(s):  
Ziyi Su ◽  
Li Yu ◽  
Hongxia Wang ◽  
Dan Zhang
2018 ◽  
Vol 307 ◽  
pp. 38-53 ◽  
Author(s):  
Wenqian Xie ◽  
Hong Zhu ◽  
Shouming Zhong ◽  
Hao Chen ◽  
Yuping Zhang

2019 ◽  
Vol 42 (2) ◽  
pp. 330-336
Author(s):  
Dongbing Tong ◽  
Qiaoyu Chen ◽  
Wuneng Zhou ◽  
Yuhua Xu

This paper proposes the [Formula: see text]-matrix method to achieve state estimation in Markov switched neural networks with Lévy noise, and the method is very distinct from the linear matrix inequality technique. Meanwhile, in light of the Lyapunov stability theory, some sufficient conditions of the exponential stability are derived for delayed neural networks, and the adaptive update law is obtained. An example verifies the condition of state estimation and confirms the effectiveness of results.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Chuangxia Huang ◽  
Hanfeng Kuang ◽  
Xiaohong Chen ◽  
Fenghua Wen

This paper considers the dynamics of switched cellular neural networks (CNNs) with mixed delays. With the help of the Lyapnnov function combined with the average dwell time method and linear matrix inequalities (LMIs) technique, some novel sufficient conditions on the issue of the uniformly ultimate boundedness, the existence of an attractor, and the globally exponential stability for CNN are given. The provided conditions are expressed in terms of LMI, which can be easily checked by the effective LMI toolbox in Matlab in practice.


2009 ◽  
Vol 23 (09) ◽  
pp. 1171-1187 ◽  
Author(s):  
YANG TANG ◽  
RUNHE QIU ◽  
JIAN-AN FANG

In this letter, a general model of an array of N linearly coupled chaotic neural networks with hybrid coupling is proposed, which is composed of constant coupling, time-varying delay coupling and distributed delay coupling. The complex network jumps from one mode to another according to a Markovian chain with known transition probability. Both the coupling time-varying delays and the coupling distributed delays terms are mode-dependent. By the adaptive feedback technique, several sufficient criteria have been proposed to ensure the synchronization in an array of jump chaotic neural networks with mode-dependent hybrid coupling and mixed delays in mean square. Finally, numerical simulations illustrated by mode switching between two complex networks of different structure dependent on mode switching verify the effectiveness of the proposed results.


Sign in / Sign up

Export Citation Format

Share Document